ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtr2 GIF version

Theorem equtr2 1699
Description: A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
equtr2 ((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)

Proof of Theorem equtr2
StepHypRef Expression
1 equtrr 1698 . . 3 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
21equcoms 1696 . 2 (𝑦 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑦))
32impcom 124 1 ((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mo23  2055  euequ1  2109
  Copyright terms: Public domain W3C validator