![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1465 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1668 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1408 ax-ie2 1453 ax-8 1465 ax-17 1489 ax-i9 1493 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equveli 1715 drsb1 1753 equsb3lem 1899 euequ1 2070 axext3 2098 reu6 2842 reu7 2848 disjiun 3890 cbviota 5051 dff13f 5625 poxp 6083 dcdifsnid 6354 supmoti 6832 isoti 6846 fsum2dlemstep 11095 ennnfonelemr 11781 ctinf 11788 |
Copyright terms: Public domain | W3C validator |