Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1492 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1697 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equveli 1747 drsb1 1787 equsb3lem 1938 euequ1 2109 axext3 2148 cbvreuvw 2698 reu6 2915 reu7 2921 disjiun 3977 cbviota 5158 dff13f 5738 poxp 6200 dcdifsnid 6472 supmoti 6958 isoti 6972 exmidontriimlem3 7179 exmidontriim 7181 fsum2dlemstep 11375 ennnfonelemr 12356 ctinf 12363 reap0 13937 |
Copyright terms: Public domain | W3C validator |