Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1497 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1702 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equveli 1752 drsb1 1792 equsb3lem 1943 euequ1 2114 axext3 2153 cbvreuvw 2702 reu6 2919 reu7 2925 disjiun 3984 cbviota 5165 dff13f 5749 poxp 6211 dcdifsnid 6483 supmoti 6970 isoti 6984 nninfwlpoim 7154 exmidontriimlem3 7200 exmidontriim 7202 fsum2dlemstep 11397 ennnfonelemr 12378 ctinf 12385 reap0 14090 |
Copyright terms: Public domain | W3C validator |