| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1528 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 1733 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1783 drsb1 1823 equsb3lem 1979 euequ1 2150 axext3 2189 cbvreuvw 2745 reu6 2963 reu7 2969 disjiun 4042 cbviota 5242 dff13f 5846 poxp 6325 dcdifsnid 6597 supmoti 7102 isoti 7116 nninfwlpoim 7288 exmidontriimlem3 7342 exmidontriim 7344 netap 7373 fsum2dlemstep 11789 ennnfonelemr 12838 ctinf 12845 reap0 16071 |
| Copyright terms: Public domain | W3C validator |