Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1484 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1689 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie2 1474 ax-8 1484 ax-17 1506 ax-i9 1510 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equveli 1739 drsb1 1779 equsb3lem 1930 euequ1 2101 axext3 2140 cbvreuvw 2686 reu6 2901 reu7 2907 disjiun 3960 cbviota 5137 dff13f 5715 poxp 6173 dcdifsnid 6444 supmoti 6929 isoti 6943 exmidontriimlem3 7141 exmidontriim 7143 fsum2dlemstep 11313 ennnfonelemr 12124 ctinf 12131 reap0 13591 |
Copyright terms: Public domain | W3C validator |