![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1515 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1720 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equveli 1770 drsb1 1810 equsb3lem 1966 euequ1 2137 axext3 2176 cbvreuvw 2732 reu6 2950 reu7 2956 disjiun 4025 cbviota 5221 dff13f 5814 poxp 6287 dcdifsnid 6559 supmoti 7054 isoti 7068 nninfwlpoim 7239 exmidontriimlem3 7285 exmidontriim 7287 netap 7316 fsum2dlemstep 11580 ennnfonelemr 12583 ctinf 12590 reap0 15618 |
Copyright terms: Public domain | W3C validator |