ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 GIF version

Theorem equequ1 1712
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1504 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
2 equtr 1709 . 2 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2impbid 129 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-ie2 1494  ax-8 1504  ax-17 1526  ax-i9 1530
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equveli  1759  drsb1  1799  equsb3lem  1950  euequ1  2121  axext3  2160  cbvreuvw  2711  reu6  2928  reu7  2934  disjiun  4000  cbviota  5185  dff13f  5773  poxp  6235  dcdifsnid  6507  supmoti  6994  isoti  7008  nninfwlpoim  7178  exmidontriimlem3  7224  exmidontriim  7226  netap  7255  fsum2dlemstep  11444  ennnfonelemr  12426  ctinf  12433  reap0  14845
  Copyright terms: Public domain W3C validator