| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-8 1518 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 1723 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: equveli 1773 drsb1 1813 equsb3lem 1969 euequ1 2140 axext3 2179 cbvreuvw 2735 reu6 2953 reu7 2959 disjiun 4028 cbviota 5224 dff13f 5817 poxp 6290 dcdifsnid 6562 supmoti 7059 isoti 7073 nninfwlpoim 7244 exmidontriimlem3 7290 exmidontriim 7292 netap 7321 fsum2dlemstep 11599 ennnfonelemr 12640 ctinf 12647 reap0 15702 | 
| Copyright terms: Public domain | W3C validator |