ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 GIF version

Theorem equequ1 1671
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1465 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
2 equtr 1668 . 2 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2impbid 128 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1408  ax-ie2 1453  ax-8 1465  ax-17 1489  ax-i9 1493
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equveli  1715  drsb1  1753  equsb3lem  1899  euequ1  2070  axext3  2098  reu6  2842  reu7  2848  disjiun  3890  cbviota  5051  dff13f  5625  poxp  6083  dcdifsnid  6354  supmoti  6832  isoti  6846  fsum2dlemstep  11095  ennnfonelemr  11781  ctinf  11788
  Copyright terms: Public domain W3C validator