| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1518 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 1723 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1773 drsb1 1813 equsb3lem 1969 euequ1 2140 axext3 2179 cbvreuvw 2735 reu6 2953 reu7 2959 disjiun 4029 cbviota 5225 dff13f 5820 poxp 6299 dcdifsnid 6571 supmoti 7068 isoti 7082 nninfwlpoim 7254 exmidontriimlem3 7308 exmidontriim 7310 netap 7339 fsum2dlemstep 11618 ennnfonelemr 12667 ctinf 12674 reap0 15815 |
| Copyright terms: Public domain | W3C validator |