![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1515 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 1720 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equveli 1770 drsb1 1810 equsb3lem 1966 euequ1 2137 axext3 2176 cbvreuvw 2732 reu6 2949 reu7 2955 disjiun 4024 cbviota 5220 dff13f 5813 poxp 6285 dcdifsnid 6557 supmoti 7052 isoti 7066 nninfwlpoim 7237 exmidontriimlem3 7283 exmidontriim 7285 netap 7314 fsum2dlemstep 11577 ennnfonelemr 12580 ctinf 12587 reap0 15548 |
Copyright terms: Public domain | W3C validator |