ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 GIF version

Theorem equequ1 1736
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1528 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
2 equtr 1733 . 2 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2impbid 129 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-17 1550  ax-i9 1554
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equveli  1783  drsb1  1823  equsb3lem  1979  euequ1  2150  axext3  2189  cbvreuvw  2745  reu6  2963  reu7  2969  disjiun  4042  cbviota  5242  dff13f  5846  poxp  6325  dcdifsnid  6597  supmoti  7102  isoti  7116  nninfwlpoim  7288  exmidontriimlem3  7342  exmidontriim  7344  netap  7373  fsum2dlemstep  11789  ennnfonelemr  12838  ctinf  12845  reap0  16071
  Copyright terms: Public domain W3C validator