ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 GIF version

Theorem equequ1 1758
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1550 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
2 equtr 1755 . 2 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2impbid 129 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie2 1540  ax-8 1550  ax-17 1572  ax-i9 1576
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equveli  1805  drsb1  1845  equsb3lem  2001  euequ1  2173  axext3  2212  cbvreuvw  2771  reu6  2992  reu7  2998  reu8nf  3110  disjiun  4078  cbviota  5283  dff13f  5900  poxp  6384  dcdifsnid  6658  supmoti  7168  isoti  7182  nninfwlpoim  7354  exmidontriimlem3  7413  exmidontriim  7415  netap  7448  fsum2dlemstep  11953  ennnfonelemr  13002  ctinf  13009  reap0  16456
  Copyright terms: Public domain W3C validator