| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1530 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 1735 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1475 ax-ie2 1520 ax-8 1530 ax-17 1552 ax-i9 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1785 drsb1 1825 equsb3lem 1981 euequ1 2153 axext3 2192 cbvreuvw 2751 reu6 2972 reu7 2978 reu8nf 3090 disjiun 4057 cbviota 5259 dff13f 5867 poxp 6348 dcdifsnid 6620 supmoti 7128 isoti 7142 nninfwlpoim 7314 exmidontriimlem3 7373 exmidontriim 7375 netap 7408 fsum2dlemstep 11911 ennnfonelemr 12960 ctinf 12967 reap0 16337 |
| Copyright terms: Public domain | W3C validator |