| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > euequ1 | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| euequ1 | ⊢ ∃!𝑥 𝑥 = 𝑦 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | equtr2 1725 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) | |
| 3 | 2 | gen2 1464 | . 2 ⊢ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) | 
| 4 | equequ1 1726 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 5 | 4 | eu4 2107 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧))) | 
| 6 | 1, 3, 5 | mpbir2an 944 | 1 ⊢ ∃!𝑥 𝑥 = 𝑦 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: copsexg 4277 oprabid 5954 | 
| Copyright terms: Public domain | W3C validator |