![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euequ1 | GIF version |
Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) |
Ref | Expression |
---|---|
euequ1 | ⊢ ∃!𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a9e 1707 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | equtr2 1722 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) | |
3 | 2 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) |
4 | equequ1 1723 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
5 | 4 | eu4 2104 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧))) |
6 | 1, 3, 5 | mpbir2an 944 | 1 ⊢ ∃!𝑥 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 ∃!weu 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 |
This theorem is referenced by: copsexg 4273 oprabid 5950 |
Copyright terms: Public domain | W3C validator |