| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euequ1 | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) |
| Ref | Expression |
|---|---|
| euequ1 | ⊢ ∃!𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1742 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | equtr2 1757 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) | |
| 3 | 2 | gen2 1496 | . 2 ⊢ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) |
| 4 | equequ1 1758 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 5 | 4 | eu4 2140 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧))) |
| 6 | 1, 3, 5 | mpbir2an 948 | 1 ⊢ ∃!𝑥 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: copsexg 4329 oprabid 6026 |
| Copyright terms: Public domain | W3C validator |