ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euequ1 GIF version

Theorem euequ1 2150
Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.)
Assertion
Ref Expression
euequ1 ∃!𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem euequ1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 a9e 1720 . 2 𝑥 𝑥 = 𝑦
2 equtr2 1735 . . 3 ((𝑥 = 𝑦𝑧 = 𝑦) → 𝑥 = 𝑧)
32gen2 1474 . 2 𝑥𝑧((𝑥 = 𝑦𝑧 = 𝑦) → 𝑥 = 𝑧)
4 equequ1 1736 . . 3 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
54eu4 2117 . 2 (∃!𝑥 𝑥 = 𝑦 ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑧((𝑥 = 𝑦𝑧 = 𝑦) → 𝑥 = 𝑧)))
61, 3, 5mpbir2an 945 1 ∃!𝑥 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  copsexg  4295  oprabid  5988
  Copyright terms: Public domain W3C validator