| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euequ1 | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) |
| Ref | Expression |
|---|---|
| euequ1 | ⊢ ∃!𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1720 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | equtr2 1735 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) | |
| 3 | 2 | gen2 1474 | . 2 ⊢ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧) |
| 4 | equequ1 1736 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 5 | 4 | eu4 2117 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∀𝑧((𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑧))) |
| 6 | 1, 3, 5 | mpbir2an 945 | 1 ⊢ ∃!𝑥 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: copsexg 4295 oprabid 5988 |
| Copyright terms: Public domain | W3C validator |