| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1730 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1475 ax-ie2 1520 ax-8 1530 ax-17 1552 ax-i9 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1735 equtr2 1737 equequ2 1739 ax10o 1741 cbvalv1 1777 cbvexv1 1778 cbvalh 1779 cbvexh 1781 equvini 1784 stdpc7 1796 sbequ12r 1798 sbequ12a 1799 sbequ 1866 sb6rf 1879 cbvalvw 1946 cbvexvw 1947 sb9v 2009 sb6a 2019 mo2n 2085 elequ1 2184 elequ2 2185 cleqh 2309 cbvab 2333 sbralie 2763 reu8 2979 sbcco2 3031 reu8nf 3090 snnex 4516 tfisi 4656 opeliunxp 4751 elrnmpt1 4951 rnxpid 5139 iotaval 5266 elabrex 5854 elabrexg 5855 opabex3d 6236 opabex3 6237 enq0ref 7588 fproddivapf 12108 setindis 16240 bdsetindis 16242 |
| Copyright terms: Public domain | W3C validator |