Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcoms | GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1692 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equtr 1697 equtr2 1699 equequ2 1701 ax10o 1703 cbvalv1 1739 cbvexv1 1740 cbvalh 1741 cbvexh 1743 equvini 1746 stdpc7 1758 sbequ12r 1760 sbequ12a 1761 sbequ 1828 sb6rf 1841 cbvalvw 1907 cbvexvw 1908 sb9v 1966 sb6a 1976 mo2n 2042 elequ1 2140 elequ2 2141 cleqh 2266 cbvab 2290 sbralie 2710 reu8 2922 sbcco2 2973 snnex 4426 tfisi 4564 opeliunxp 4659 elrnmpt1 4855 rnxpid 5038 iotaval 5164 elabrex 5726 opabex3d 6089 opabex3 6090 enq0ref 7374 fproddivapf 11572 setindis 13849 bdsetindis 13851 |
Copyright terms: Public domain | W3C validator |