![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcoms | GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1663 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-gen 1408 ax-ie2 1453 ax-8 1465 ax-17 1489 ax-i9 1493 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equtr 1668 equtr2 1670 equequ2 1672 elequ1 1673 elequ2 1674 ax10o 1676 cbvalh 1709 cbvexh 1711 equvini 1714 stdpc7 1726 sbequ12r 1728 sbequ12a 1729 sbequ 1794 sb6rf 1807 sb9v 1929 sb6a 1939 mo2n 2003 cleqh 2214 cbvab 2237 sbralie 2641 reu8 2849 sbcco2 2900 snnex 4329 tfisi 4461 opeliunxp 4554 elrnmpt1 4750 rnxpid 4931 iotaval 5057 elabrex 5613 opabex3d 5973 opabex3 5974 enq0ref 7186 setindis 12849 bdsetindis 12851 |
Copyright terms: Public domain | W3C validator |