ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcoms GIF version

Theorem equcoms 1701
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
equcoms.1 (𝑥 = 𝑦𝜑)
Assertion
Ref Expression
equcoms (𝑦 = 𝑥𝜑)

Proof of Theorem equcoms
StepHypRef Expression
1 equcomi 1697 . 2 (𝑦 = 𝑥𝑥 = 𝑦)
2 equcoms.1 . 2 (𝑥 = 𝑦𝜑)
31, 2syl 14 1 (𝑦 = 𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-17 1519  ax-i9 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equtr  1702  equtr2  1704  equequ2  1706  ax10o  1708  cbvalv1  1744  cbvexv1  1745  cbvalh  1746  cbvexh  1748  equvini  1751  stdpc7  1763  sbequ12r  1765  sbequ12a  1766  sbequ  1833  sb6rf  1846  cbvalvw  1912  cbvexvw  1913  sb9v  1971  sb6a  1981  mo2n  2047  elequ1  2145  elequ2  2146  cleqh  2270  cbvab  2294  sbralie  2714  reu8  2926  sbcco2  2977  snnex  4433  tfisi  4571  opeliunxp  4666  elrnmpt1  4862  rnxpid  5045  iotaval  5171  elabrex  5737  opabex3d  6100  opabex3  6101  enq0ref  7395  fproddivapf  11594  setindis  14002  bdsetindis  14004
  Copyright terms: Public domain W3C validator