Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcoms | GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1697 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equtr 1702 equtr2 1704 equequ2 1706 ax10o 1708 cbvalv1 1744 cbvexv1 1745 cbvalh 1746 cbvexh 1748 equvini 1751 stdpc7 1763 sbequ12r 1765 sbequ12a 1766 sbequ 1833 sb6rf 1846 cbvalvw 1912 cbvexvw 1913 sb9v 1971 sb6a 1981 mo2n 2047 elequ1 2145 elequ2 2146 cleqh 2270 cbvab 2294 sbralie 2714 reu8 2926 sbcco2 2977 snnex 4433 tfisi 4571 opeliunxp 4666 elrnmpt1 4862 rnxpid 5045 iotaval 5171 elabrex 5737 opabex3d 6100 opabex3 6101 enq0ref 7395 fproddivapf 11594 setindis 14002 bdsetindis 14004 |
Copyright terms: Public domain | W3C validator |