| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equcoms | GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) | 
| Ref | Expression | 
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equcomi 1718 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: equtr 1723 equtr2 1725 equequ2 1727 ax10o 1729 cbvalv1 1765 cbvexv1 1766 cbvalh 1767 cbvexh 1769 equvini 1772 stdpc7 1784 sbequ12r 1786 sbequ12a 1787 sbequ 1854 sb6rf 1867 cbvalvw 1934 cbvexvw 1935 sb9v 1997 sb6a 2007 mo2n 2073 elequ1 2171 elequ2 2172 cleqh 2296 cbvab 2320 sbralie 2747 reu8 2960 sbcco2 3012 snnex 4483 tfisi 4623 opeliunxp 4718 elrnmpt1 4917 rnxpid 5104 iotaval 5230 elabrex 5804 elabrexg 5805 opabex3d 6178 opabex3 6179 enq0ref 7500 fproddivapf 11796 setindis 15613 bdsetindis 15615 | 
| Copyright terms: Public domain | W3C validator |