| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1728 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1733 equtr2 1735 equequ2 1737 ax10o 1739 cbvalv1 1775 cbvexv1 1776 cbvalh 1777 cbvexh 1779 equvini 1782 stdpc7 1794 sbequ12r 1796 sbequ12a 1797 sbequ 1864 sb6rf 1877 cbvalvw 1944 cbvexvw 1945 sb9v 2007 sb6a 2017 mo2n 2083 elequ1 2181 elequ2 2182 cleqh 2306 cbvab 2330 sbralie 2757 reu8 2970 sbcco2 3022 snnex 4499 tfisi 4639 opeliunxp 4734 elrnmpt1 4934 rnxpid 5122 iotaval 5248 elabrex 5833 elabrexg 5834 opabex3d 6213 opabex3 6214 enq0ref 7553 fproddivapf 11986 setindis 15977 bdsetindis 15979 |
| Copyright terms: Public domain | W3C validator |