| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1750 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1755 equtr2 1757 equequ2 1759 ax10o 1761 cbvalv1 1797 cbvexv1 1798 cbvalh 1799 cbvexh 1801 equvini 1804 stdpc7 1816 sbequ12r 1818 sbequ12a 1819 sbequ 1886 sb6rf 1899 cbvalvw 1966 cbvexvw 1967 sb9v 2029 sb6a 2039 mo2n 2105 elequ1 2204 elequ2 2205 cleqh 2329 cbvab 2353 sbralie 2783 reu8 2999 sbcco2 3051 reu8nf 3110 snnex 4539 tfisi 4679 opeliunxp 4774 elrnmpt1 4975 rnxpid 5163 iotaval 5290 elabrex 5887 elabrexg 5888 opabex3d 6272 opabex3 6273 enq0ref 7628 fproddivapf 12150 setindis 16354 bdsetindis 16356 |
| Copyright terms: Public domain | W3C validator |