ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtr GIF version

Theorem equtr 1697
Description: A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtr (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))

Proof of Theorem equtr
StepHypRef Expression
1 ax-8 1492 . 2 (𝑦 = 𝑥 → (𝑦 = 𝑧𝑥 = 𝑧))
21equcoms 1696 1 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equtrr  1698  equequ1  1700  equveli  1747  equvin  1851
  Copyright terms: Public domain W3C validator