ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtr GIF version

Theorem equtr 1731
Description: A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtr (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))

Proof of Theorem equtr
StepHypRef Expression
1 ax-8 1526 . 2 (𝑦 = 𝑥 → (𝑦 = 𝑧𝑥 = 𝑧))
21equcoms 1730 1 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1471  ax-ie2 1516  ax-8 1526  ax-17 1548  ax-i9 1552
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equtrr  1732  equequ1  1734  equveli  1781  equvin  1885
  Copyright terms: Public domain W3C validator