| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1756 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equtrr 1756 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 2 | equcoms 1754 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1866 ax11v 1873 ax11ev 1874 equs5or 1876 eujust 2079 euf 2082 mo23 2119 eleq1w 2290 cbvabw 2352 csbcow 3135 disjiun 4077 iotaval 5289 dffun4f 5333 dff13f 5893 supmoti 7156 isoti 7170 nninfwlpoim 7342 exmidontriim 7403 netap 7436 ennnfonelemr 12989 ctinf 12996 infpn2 13022 lgseisenlem2 15744 |
| Copyright terms: Public domain | W3C validator |