| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1724 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equtrr 1724 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 2 | equcoms 1722 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1834 ax11v 1841 ax11ev 1842 equs5or 1844 eujust 2047 euf 2050 mo23 2086 eleq1w 2257 cbvabw 2319 csbcow 3095 disjiun 4028 iotaval 5230 dffun4f 5274 dff13f 5817 supmoti 7059 isoti 7073 nninfwlpoim 7244 exmidontriim 7292 netap 7321 ennnfonelemr 12640 ctinf 12647 infpn2 12673 lgseisenlem2 15312 |
| Copyright terms: Public domain | W3C validator |