| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1734 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equtrr 1734 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 2 | equcoms 1732 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1844 ax11v 1851 ax11ev 1852 equs5or 1854 eujust 2057 euf 2060 mo23 2096 eleq1w 2267 cbvabw 2329 csbcow 3108 disjiun 4049 iotaval 5257 dffun4f 5301 dff13f 5857 supmoti 7116 isoti 7130 nninfwlpoim 7302 exmidontriim 7363 netap 7396 ennnfonelemr 12879 ctinf 12886 infpn2 12912 lgseisenlem2 15633 |
| Copyright terms: Public domain | W3C validator |