![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 1721 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equtrr 1721 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 2 | equcoms 1719 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v2 1831 ax11v 1838 ax11ev 1839 equs5or 1841 eujust 2044 euf 2047 mo23 2083 eleq1w 2254 cbvabw 2316 csbcow 3091 disjiun 4024 iotaval 5226 dffun4f 5270 dff13f 5813 supmoti 7052 isoti 7066 nninfwlpoim 7237 exmidontriim 7285 netap 7314 ennnfonelemr 12580 ctinf 12587 infpn2 12613 lgseisenlem2 15187 |
Copyright terms: Public domain | W3C validator |