![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 1643 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equtrr 1643 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 2 | equcoms 1641 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
4 | 1, 3 | impbid 127 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1383 ax-ie2 1428 ax-8 1440 ax-17 1464 ax-i9 1468 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ax11v2 1748 ax11v 1755 ax11ev 1756 equs5or 1758 eujust 1950 euf 1953 mo23 1989 eleq1w 2148 disjiun 3840 iotaval 4991 dffun4f 5031 dff13f 5549 supmoti 6686 isoti 6700 |
Copyright terms: Public domain | W3C validator |