| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1732 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equtrr 1732 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 2 | equcoms 1730 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie2 1516 ax-8 1526 ax-17 1548 ax-i9 1552 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1842 ax11v 1849 ax11ev 1850 equs5or 1852 eujust 2055 euf 2058 mo23 2094 eleq1w 2265 cbvabw 2327 csbcow 3103 disjiun 4038 iotaval 5240 dffun4f 5284 dff13f 5829 supmoti 7077 isoti 7091 nninfwlpoim 7263 exmidontriim 7319 netap 7348 ennnfonelemr 12713 ctinf 12720 infpn2 12746 lgseisenlem2 15466 |
| Copyright terms: Public domain | W3C validator |