ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ2 GIF version

Theorem equequ2 1735
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ2 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Proof of Theorem equequ2
StepHypRef Expression
1 equtrr 1732 . 2 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
2 equtrr 1732 . . 3 (𝑦 = 𝑥 → (𝑧 = 𝑦𝑧 = 𝑥))
32equcoms 1730 . 2 (𝑥 = 𝑦 → (𝑧 = 𝑦𝑧 = 𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471  ax-ie2 1516  ax-8 1526  ax-17 1548  ax-i9 1552
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax11v2  1842  ax11v  1849  ax11ev  1850  equs5or  1852  eujust  2055  euf  2058  mo23  2094  eleq1w  2265  cbvabw  2327  csbcow  3103  disjiun  4038  iotaval  5240  dffun4f  5284  dff13f  5829  supmoti  7077  isoti  7091  nninfwlpoim  7263  exmidontriim  7319  netap  7348  ennnfonelemr  12713  ctinf  12720  infpn2  12746  lgseisenlem2  15466
  Copyright terms: Public domain W3C validator