ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ2 GIF version

Theorem equequ2 1727
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ2 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Proof of Theorem equequ2
StepHypRef Expression
1 equtrr 1724 . 2 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
2 equtrr 1724 . . 3 (𝑦 = 𝑥 → (𝑧 = 𝑦𝑧 = 𝑥))
32equcoms 1722 . 2 (𝑥 = 𝑦 → (𝑧 = 𝑦𝑧 = 𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ie2 1508  ax-8 1518  ax-17 1540  ax-i9 1544
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax11v2  1834  ax11v  1841  ax11ev  1842  equs5or  1844  eujust  2047  euf  2050  mo23  2086  eleq1w  2257  cbvabw  2319  csbcow  3095  disjiun  4028  iotaval  5230  dffun4f  5274  dff13f  5817  supmoti  7059  isoti  7073  nninfwlpoim  7244  exmidontriim  7292  netap  7321  ennnfonelemr  12640  ctinf  12647  infpn2  12673  lgseisenlem2  15312
  Copyright terms: Public domain W3C validator