Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euorv | GIF version |
Description: Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
euorv | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1506 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | euor 2032 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∃!weu 2006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-eu 2009 |
This theorem is referenced by: eueq2dc 2885 |
Copyright terms: Public domain | W3C validator |