Proof of Theorem eueq2dc
| Step | Hyp | Ref
| Expression |
| 1 | | df-dc 836 |
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
| 2 | | notnot 630 |
. . . . 5
⊢ (𝜑 → ¬ ¬ 𝜑) |
| 3 | | eueq2dc.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
| 4 | 3 | eueq1 2936 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐴 |
| 5 | | euanv 2102 |
. . . . . . 7
⊢
(∃!𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ (𝜑 ∧ ∃!𝑥 𝑥 = 𝐴)) |
| 6 | 5 | biimpri 133 |
. . . . . 6
⊢ ((𝜑 ∧ ∃!𝑥 𝑥 = 𝐴) → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
| 7 | 4, 6 | mpan2 425 |
. . . . 5
⊢ (𝜑 → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
| 8 | | euorv 2072 |
. . . . 5
⊢ ((¬
¬ 𝜑 ∧ ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 9 | 2, 7, 8 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 10 | | orcom 729 |
. . . . . 6
⊢ ((¬
𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑)) |
| 11 | 2 | bianfd 950 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝜑 ↔ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 12 | 11 | orbi2d 791 |
. . . . . 6
⊢ (𝜑 → (((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 13 | 10, 12 | bitrid 192 |
. . . . 5
⊢ (𝜑 → ((¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 14 | 13 | eubidv 2053 |
. . . 4
⊢ (𝜑 → (∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 15 | 9, 14 | mpbid 147 |
. . 3
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 16 | | eueq2dc.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 17 | 16 | eueq1 2936 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐵 |
| 18 | | euanv 2102 |
. . . . . . 7
⊢
(∃!𝑥(¬
𝜑 ∧ 𝑥 = 𝐵) ↔ (¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵)) |
| 19 | 18 | biimpri 133 |
. . . . . 6
⊢ ((¬
𝜑 ∧ ∃!𝑥 𝑥 = 𝐵) → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
| 20 | 17, 19 | mpan2 425 |
. . . . 5
⊢ (¬
𝜑 → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
| 21 | | euorv 2072 |
. . . . 5
⊢ ((¬
𝜑 ∧ ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 22 | 20, 21 | mpdan 421 |
. . . 4
⊢ (¬
𝜑 → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 23 | | id 19 |
. . . . . . 7
⊢ (¬
𝜑 → ¬ 𝜑) |
| 24 | 23 | bianfd 950 |
. . . . . 6
⊢ (¬
𝜑 → (𝜑 ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
| 25 | 24 | orbi1d 792 |
. . . . 5
⊢ (¬
𝜑 → ((𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 26 | 25 | eubidv 2053 |
. . . 4
⊢ (¬
𝜑 → (∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 27 | 22, 26 | mpbid 147 |
. . 3
⊢ (¬
𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 28 | 15, 27 | jaoi 717 |
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 29 | 1, 28 | sylbi 121 |
1
⊢
(DECID 𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |