Proof of Theorem eueq2dc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-dc 836 | 
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 2 |   | notnot 630 | 
. . . . 5
⊢ (𝜑 → ¬ ¬ 𝜑) | 
| 3 |   | eueq2dc.1 | 
. . . . . . 7
⊢ 𝐴 ∈ V | 
| 4 | 3 | eueq1 2936 | 
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐴 | 
| 5 |   | euanv 2102 | 
. . . . . . 7
⊢
(∃!𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ (𝜑 ∧ ∃!𝑥 𝑥 = 𝐴)) | 
| 6 | 5 | biimpri 133 | 
. . . . . 6
⊢ ((𝜑 ∧ ∃!𝑥 𝑥 = 𝐴) → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) | 
| 7 | 4, 6 | mpan2 425 | 
. . . . 5
⊢ (𝜑 → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) | 
| 8 |   | euorv 2072 | 
. . . . 5
⊢ ((¬
¬ 𝜑 ∧ ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) | 
| 9 | 2, 7, 8 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) | 
| 10 |   | orcom 729 | 
. . . . . 6
⊢ ((¬
𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑)) | 
| 11 | 2 | bianfd 950 | 
. . . . . . 7
⊢ (𝜑 → (¬ 𝜑 ↔ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 12 | 11 | orbi2d 791 | 
. . . . . 6
⊢ (𝜑 → (((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) | 
| 13 | 10, 12 | bitrid 192 | 
. . . . 5
⊢ (𝜑 → ((¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) | 
| 14 | 13 | eubidv 2053 | 
. . . 4
⊢ (𝜑 → (∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) | 
| 15 | 9, 14 | mpbid 147 | 
. . 3
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 16 |   | eueq2dc.2 | 
. . . . . . 7
⊢ 𝐵 ∈ V | 
| 17 | 16 | eueq1 2936 | 
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐵 | 
| 18 |   | euanv 2102 | 
. . . . . . 7
⊢
(∃!𝑥(¬
𝜑 ∧ 𝑥 = 𝐵) ↔ (¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵)) | 
| 19 | 18 | biimpri 133 | 
. . . . . 6
⊢ ((¬
𝜑 ∧ ∃!𝑥 𝑥 = 𝐵) → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) | 
| 20 | 17, 19 | mpan2 425 | 
. . . . 5
⊢ (¬
𝜑 → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) | 
| 21 |   | euorv 2072 | 
. . . . 5
⊢ ((¬
𝜑 ∧ ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 22 | 20, 21 | mpdan 421 | 
. . . 4
⊢ (¬
𝜑 → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 23 |   | id 19 | 
. . . . . . 7
⊢ (¬
𝜑 → ¬ 𝜑) | 
| 24 | 23 | bianfd 950 | 
. . . . . 6
⊢ (¬
𝜑 → (𝜑 ↔ (𝜑 ∧ 𝑥 = 𝐴))) | 
| 25 | 24 | orbi1d 792 | 
. . . . 5
⊢ (¬
𝜑 → ((𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) | 
| 26 | 25 | eubidv 2053 | 
. . . 4
⊢ (¬
𝜑 → (∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) | 
| 27 | 22, 26 | mpbid 147 | 
. . 3
⊢ (¬
𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 28 | 15, 27 | jaoi 717 | 
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | 
| 29 | 1, 28 | sylbi 121 | 
1
⊢
(DECID 𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |