| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euor | GIF version | ||
| Description: Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| euor.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| euor | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euor.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | hbn 1676 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| 3 | biorf 745 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 4 | 2, 3 | eubidh 2059 | . 2 ⊢ (¬ 𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∨ 𝜓))) |
| 5 | 4 | biimpa 296 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1370 ∃!weu 2053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-eu 2056 |
| This theorem is referenced by: euorv 2080 |
| Copyright terms: Public domain | W3C validator |