ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exalim GIF version

Theorem exalim 1490
Description: One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1489. (Contributed by Jim Kingdon, 29-Jul-2018.)
Assertion
Ref Expression
exalim (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)

Proof of Theorem exalim
StepHypRef Expression
1 alnex 1487 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
21biimpi 119 . 2 (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑)
32con2i 617 1 (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  n0rf  3421  ax9vsep  4105
  Copyright terms: Public domain W3C validator