ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exalim GIF version

Theorem exalim 1500
Description: One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1499. (Contributed by Jim Kingdon, 29-Jul-2018.)
Assertion
Ref Expression
exalim (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)

Proof of Theorem exalim
StepHypRef Expression
1 alnex 1497 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
21biimpi 120 . 2 (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑)
32con2i 627 1 (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1351  wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1445  ax-gen 1447  ax-ie2 1492
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  n0rf  3433  ax9vsep  4121
  Copyright terms: Public domain W3C validator