ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0rf GIF version

Theorem n0rf 3463
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class 𝐴 nonempty if 𝐴 ≠ ∅ and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3464 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
n0rf.1 𝑥𝐴
Assertion
Ref Expression
n0rf (∃𝑥 𝑥𝐴𝐴 ≠ ∅)

Proof of Theorem n0rf
StepHypRef Expression
1 exalim 1516 . 2 (∃𝑥 𝑥𝐴 → ¬ ∀𝑥 ¬ 𝑥𝐴)
2 n0rf.1 . . . . 5 𝑥𝐴
3 nfcv 2339 . . . . 5 𝑥
42, 3cleqf 2364 . . . 4 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
5 noel 3454 . . . . . 6 ¬ 𝑥 ∈ ∅
65nbn 700 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
76albii 1484 . . . 4 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
84, 7bitr4i 187 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
98necon3abii 2403 . 2 (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
101, 9sylibr 134 1 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362   = wceq 1364  wex 1506  wcel 2167  wnfc 2326  wne 2367  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  n0r  3464  abn0r  3475
  Copyright terms: Public domain W3C validator