ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0rf GIF version

Theorem n0rf 3427
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class 𝐴 nonempty if 𝐴 ≠ ∅ and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3428 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
n0rf.1 𝑥𝐴
Assertion
Ref Expression
n0rf (∃𝑥 𝑥𝐴𝐴 ≠ ∅)

Proof of Theorem n0rf
StepHypRef Expression
1 exalim 1495 . 2 (∃𝑥 𝑥𝐴 → ¬ ∀𝑥 ¬ 𝑥𝐴)
2 n0rf.1 . . . . 5 𝑥𝐴
3 nfcv 2312 . . . . 5 𝑥
42, 3cleqf 2337 . . . 4 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
5 noel 3418 . . . . . 6 ¬ 𝑥 ∈ ∅
65nbn 694 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
76albii 1463 . . . 4 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
84, 7bitr4i 186 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
98necon3abii 2376 . 2 (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
101, 9sylibr 133 1 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346   = wceq 1348  wex 1485  wcel 2141  wnfc 2299  wne 2340  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  n0r  3428  abn0r  3439
  Copyright terms: Public domain W3C validator