![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0rf | GIF version |
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class 𝐴 nonempty if 𝐴 ≠ ∅ and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3438 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0rf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
n0rf | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exalim 1502 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | n0rf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥∅ | |
4 | 2, 3 | cleqf 2344 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
5 | noel 3428 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
6 | 5 | nbn 699 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
7 | 6 | albii 1470 | . . . 4 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
8 | 4, 7 | bitr4i 187 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
9 | 8 | necon3abii 2383 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
10 | 1, 9 | sylibr 134 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Ⅎwnfc 2306 ≠ wne 2347 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-dif 3133 df-nul 3425 |
This theorem is referenced by: n0r 3438 abn0r 3449 |
Copyright terms: Public domain | W3C validator |