| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > n0rf | GIF version | ||
| Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class 𝐴 nonempty if 𝐴 ≠ ∅ and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3473 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by Jim Kingdon, 31-Jul-2018.) |
| Ref | Expression |
|---|---|
| n0rf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| n0rf | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exalim 1524 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | n0rf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑥∅ | |
| 4 | 2, 3 | cleqf 2372 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 5 | noel 3463 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 6 | 5 | nbn 700 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 7 | 6 | albii 1492 | . . . 4 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 8 | 4, 7 | bitr4i 187 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 9 | 8 | necon3abii 2411 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 10 | 1, 9 | sylibr 134 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Ⅎwnfc 2334 ≠ wne 2375 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: n0r 3473 abn0r 3484 |
| Copyright terms: Public domain | W3C validator |