| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | GIF version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1523 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1379 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 647 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
| 3 | 2 | 19.23h 1520 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
| 4 | dfnot 1390 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
| 5 | 4 | albii 1492 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
| 6 | dfnot 1390 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
| 7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1370 ⊥wfal 1377 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie2 1516 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 |
| This theorem is referenced by: nex 1522 dfexdc 1523 exalim 1524 ax-9 1553 alinexa 1625 nexd 1635 alexdc 1641 19.30dc 1649 19.33b2 1651 alexnim 1670 nnal 1671 ax6blem 1672 nf4dc 1692 nf4r 1693 mo2n 2081 notm0 3480 disjsn 3694 snprc 3697 dm0rn0 4894 reldm0 4895 dmsn0 5149 dmsn0el 5151 iotanul 5246 imadiflem 5352 imadif 5353 ltexprlemdisj 7718 recexprlemdisj 7742 fzo0 10290 |
| Copyright terms: Public domain | W3C validator |