| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alnex | GIF version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1515 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) | 
| Ref | Expression | 
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fal 1371 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 647 | . . 3 ⊢ (⊥ → ∀𝑥⊥) | 
| 3 | 2 | 19.23h 1512 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) | 
| 4 | dfnot 1382 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
| 5 | 4 | albii 1484 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) | 
| 6 | dfnot 1382 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
| 7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 ⊥wfal 1369 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: nex 1514 dfexdc 1515 exalim 1516 ax-9 1545 alinexa 1617 nexd 1627 alexdc 1633 19.30dc 1641 19.33b2 1643 alexnim 1662 nnal 1663 ax6blem 1664 nf4dc 1684 nf4r 1685 mo2n 2073 notm0 3471 disjsn 3684 snprc 3687 dm0rn0 4883 reldm0 4884 dmsn0 5137 dmsn0el 5139 iotanul 5234 imadiflem 5337 imadif 5338 ltexprlemdisj 7673 recexprlemdisj 7697 fzo0 10244 | 
| Copyright terms: Public domain | W3C validator |