![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alnex | GIF version |
Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1512 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1371 | . . . 4 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 647 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
3 | 2 | 19.23h 1509 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
4 | dfnot 1382 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
5 | 4 | albii 1481 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
6 | dfnot 1382 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 ⊥wfal 1369 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie2 1505 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: nex 1511 dfexdc 1512 exalim 1513 ax-9 1542 alinexa 1614 nexd 1624 alexdc 1630 19.30dc 1638 19.33b2 1640 alexnim 1659 nnal 1660 ax6blem 1661 nf4dc 1681 nf4r 1682 mo2n 2070 notm0 3467 disjsn 3680 snprc 3683 dm0rn0 4879 reldm0 4880 dmsn0 5133 dmsn0el 5135 iotanul 5230 imadiflem 5333 imadif 5334 ltexprlemdisj 7666 recexprlemdisj 7690 fzo0 10235 |
Copyright terms: Public domain | W3C validator |