| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | GIF version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1525 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1380 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 647 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
| 3 | 2 | 19.23h 1522 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
| 4 | dfnot 1391 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
| 5 | 4 | albii 1494 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
| 6 | dfnot 1391 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
| 7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1371 ⊥wfal 1378 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie2 1518 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: nex 1524 dfexdc 1525 exalim 1526 ax-9 1555 alinexa 1627 nexd 1637 alexdc 1643 19.30dc 1651 19.33b2 1653 alexnim 1672 nnal 1673 ax6blem 1674 nf4dc 1694 nf4r 1695 mo2n 2083 notm0 3485 disjsn 3700 snprc 3703 dm0rn0 4904 reldm0 4905 dmsn0 5159 dmsn0el 5161 iotanul 5256 imadiflem 5362 imadif 5363 ltexprlemdisj 7739 recexprlemdisj 7763 fzo0 10312 |
| Copyright terms: Public domain | W3C validator |