![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alnex | GIF version |
Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1445 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1306 | . . . 4 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 615 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
3 | 2 | 19.23h 1442 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
4 | dfnot 1317 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
5 | 4 | albii 1414 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
6 | dfnot 1317 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
7 | 3, 5, 6 | 3bitr4i 211 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1297 ⊥wfal 1304 ∃wex 1436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-5 1391 ax-gen 1393 ax-ie2 1438 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-fal 1305 |
This theorem is referenced by: nex 1444 dfexdc 1445 exalim 1446 ax-9 1479 alinexa 1550 nexd 1560 alexdc 1566 19.30dc 1574 19.33b2 1576 alexnim 1595 ax6blem 1596 nf4dc 1616 nf4r 1617 mo2n 1988 notm0 3330 disjsn 3532 snprc 3535 dm0rn0 4694 reldm0 4695 dmsn0 4942 dmsn0el 4944 iotanul 5039 imadiflem 5138 imadif 5139 ltexprlemdisj 7315 recexprlemdisj 7339 fzo0 9786 |
Copyright terms: Public domain | W3C validator |