Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alnex | GIF version |
Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1489 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1350 | . . . 4 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 636 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
3 | 2 | 19.23h 1486 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
4 | dfnot 1361 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
5 | 4 | albii 1458 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
6 | dfnot 1361 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
7 | 3, 5, 6 | 3bitr4i 211 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1341 ⊥wfal 1348 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: nex 1488 dfexdc 1489 exalim 1490 ax-9 1519 alinexa 1591 nexd 1601 alexdc 1607 19.30dc 1615 19.33b2 1617 alexnim 1636 nnal 1637 ax6blem 1638 nf4dc 1658 nf4r 1659 mo2n 2042 notm0 3429 disjsn 3638 snprc 3641 dm0rn0 4821 reldm0 4822 dmsn0 5071 dmsn0el 5073 iotanul 5168 imadiflem 5267 imadif 5268 ltexprlemdisj 7547 recexprlemdisj 7571 fzo0 10103 |
Copyright terms: Public domain | W3C validator |