![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alnex | GIF version |
Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1501 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1360 | . . . 4 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 646 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
3 | 2 | 19.23h 1498 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
4 | dfnot 1371 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
5 | 4 | albii 1470 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
6 | dfnot 1371 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1351 ⊥wfal 1358 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie2 1494 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: nex 1500 dfexdc 1501 exalim 1502 ax-9 1531 alinexa 1603 nexd 1613 alexdc 1619 19.30dc 1627 19.33b2 1629 alexnim 1648 nnal 1649 ax6blem 1650 nf4dc 1670 nf4r 1671 mo2n 2054 notm0 3444 disjsn 3655 snprc 3658 dm0rn0 4845 reldm0 4846 dmsn0 5097 dmsn0el 5099 iotanul 5194 imadiflem 5296 imadif 5297 ltexprlemdisj 7605 recexprlemdisj 7629 fzo0 10168 |
Copyright terms: Public domain | W3C validator |