| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | GIF version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1547 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1402 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 649 | . . 3 ⊢ (⊥ → ∀𝑥⊥) |
| 3 | 2 | 19.23h 1544 | . 2 ⊢ (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥)) |
| 4 | dfnot 1413 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | |
| 5 | 4 | albii 1516 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥)) |
| 6 | dfnot 1413 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥)) | |
| 7 | 3, 5, 6 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1393 ⊥wfal 1400 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: nex 1546 dfexdc 1547 exalim 1548 ax-9 1577 alinexa 1649 nexd 1659 alexdc 1665 19.30dc 1673 19.33b2 1675 alexnim 1694 nnal 1695 ax6blem 1696 nf4dc 1716 nf4r 1717 mo2n 2105 notm0 3512 disjsn 3728 snprc 3731 dm0rn0 4939 reldm0 4940 dmsn0 5195 dmsn0el 5197 iotanul 5293 imadiflem 5399 imadif 5400 ltexprlemdisj 7789 recexprlemdisj 7813 fzo0 10362 |
| Copyright terms: Public domain | W3C validator |