ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alnex GIF version

Theorem alnex 1492
Description: Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1494 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.)
Assertion
Ref Expression
alnex (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)

Proof of Theorem alnex
StepHypRef Expression
1 fal 1355 . . . 4 ¬ ⊥
21pm2.21i 641 . . 3 (⊥ → ∀𝑥⊥)
3219.23h 1491 . 2 (∀𝑥(𝜑 → ⊥) ↔ (∃𝑥𝜑 → ⊥))
4 dfnot 1366 . . 3 𝜑 ↔ (𝜑 → ⊥))
54albii 1463 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 → ⊥))
6 dfnot 1366 . 2 (¬ ∃𝑥𝜑 ↔ (∃𝑥𝜑 → ⊥))
73, 5, 63bitr4i 211 1 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346  wfal 1353  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  nex  1493  dfexdc  1494  exalim  1495  ax-9  1524  alinexa  1596  nexd  1606  alexdc  1612  19.30dc  1620  19.33b2  1622  alexnim  1641  nnal  1642  ax6blem  1643  nf4dc  1663  nf4r  1664  mo2n  2047  notm0  3435  disjsn  3645  snprc  3648  dm0rn0  4828  reldm0  4829  dmsn0  5078  dmsn0el  5080  iotanul  5175  imadiflem  5277  imadif  5278  ltexprlemdisj  7568  recexprlemdisj  7592  fzo0  10124
  Copyright terms: Public domain W3C validator