Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3exdistr | GIF version |
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3exdistr | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 982 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | 2exbii 1604 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | 19.42vv 1909 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒))) | |
4 | exdistr 1907 | . . . 4 ⊢ (∃𝑦∃𝑧(𝜓 ∧ 𝜒) ↔ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)) | |
5 | 4 | anbi2i 457 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
6 | 2, 3, 5 | 3bitri 206 | . 2 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
7 | 6 | exbii 1603 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |