ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exdistr GIF version

Theorem 3exdistr 1908
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3exdistr (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem 3exdistr
StepHypRef Expression
1 3anass 977 . . . 4 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
212exbii 1599 . . 3 (∃𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑦𝑧(𝜑 ∧ (𝜓𝜒)))
3 19.42vv 1904 . . 3 (∃𝑦𝑧(𝜑 ∧ (𝜓𝜒)) ↔ (𝜑 ∧ ∃𝑦𝑧(𝜓𝜒)))
4 exdistr 1902 . . . 4 (∃𝑦𝑧(𝜓𝜒) ↔ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))
54anbi2i 454 . . 3 ((𝜑 ∧ ∃𝑦𝑧(𝜓𝜒)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
62, 3, 53bitri 205 . 2 (∃𝑦𝑧(𝜑𝜓𝜒) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
76exbii 1598 1 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator