| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exdistr | GIF version | ||
| Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3exdistr | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 984 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | 2exbii 1620 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | 19.42vv 1926 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒))) | |
| 4 | exdistr 1924 | . . . 4 ⊢ (∃𝑦∃𝑧(𝜓 ∧ 𝜒) ↔ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)) | |
| 5 | 4 | anbi2i 457 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
| 6 | 2, 3, 5 | 3bitri 206 | . 2 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
| 7 | 6 | exbii 1619 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |