ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbi GIF version

Theorem exbi 1650
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
exbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem exbi
StepHypRef Expression
1 biimp 118 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
21alimi 1501 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓))
3 exim 1645 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
42, 3syl 14 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
5 biimpr 130 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
65alimi 1501 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥(𝜓𝜑))
7 exim 1645 . . 3 (∀𝑥(𝜓𝜑) → (∃𝑥𝜓 → ∃𝑥𝜑))
86, 7syl 14 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜓 → ∃𝑥𝜑))
94, 8impbid 129 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exbii  1651  exbidh  1660  exintrbi  1679  19.19  1712  rexrnmpt  5771
  Copyright terms: Public domain W3C validator