| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbi | GIF version | ||
| Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 118 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | alimi 1469 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 3 | exim 1613 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| 5 | biimpr 130 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 6 | 5 | alimi 1469 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑥(𝜓 → 𝜑)) |
| 7 | exim 1613 | . . 3 ⊢ (∀𝑥(𝜓 → 𝜑) → (∃𝑥𝜓 → ∃𝑥𝜑)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜓 → ∃𝑥𝜑)) |
| 9 | 4, 8 | impbid 129 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbii 1619 exbidh 1628 exintrbi 1647 19.19 1680 rexrnmpt 5708 |
| Copyright terms: Public domain | W3C validator |