| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimd2 | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1610 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| exlimd2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| exlimd2.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| exlimd2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimd2 | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd2.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | exlimd2.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | 1, 2 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥(𝜒 → ∀𝑥𝜒)) |
| 4 | exlimd2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 5 | 1, 4 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 6 | 19.23ht 1511 | . . 3 ⊢ (∀𝑥(𝜒 → ∀𝑥𝜒) → (∀𝑥(𝜓 → 𝜒) ↔ (∃𝑥𝜓 → 𝜒))) | |
| 7 | 6 | biimpd 144 | . 2 ⊢ (∀𝑥(𝜒 → ∀𝑥𝜒) → (∀𝑥(𝜓 → 𝜒) → (∃𝑥𝜓 → 𝜒))) |
| 8 | 3, 5, 7 | sylc 62 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equsexd 1743 cbvexdh 1941 |
| Copyright terms: Public domain | W3C validator |