ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdh GIF version

Theorem exlimdh 1619
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
Hypotheses
Ref Expression
exlimdh.1 (𝜑 → ∀𝑥𝜑)
exlimdh.2 (𝜒 → ∀𝑥𝜒)
exlimdh.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdh (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimdh
StepHypRef Expression
1 exlimdh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 exlimdh.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1492 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 exlimdh.2 . . 3 (𝜒 → ∀𝑥𝜒)
5419.23h 1521 . 2 (∀𝑥(𝜓𝜒) ↔ (∃𝑥𝜓𝜒))
63, 5sylib 122 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1470  ax-gen 1472  ax-ie2 1517
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimd  1620  exim  1622  exlimdv  1842  equs5  1852  cbvexdh  1950  exists2  2151
  Copyright terms: Public domain W3C validator