| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | GIF version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
| Ref | Expression |
|---|---|
| funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5414 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
| 3 | fndm 5416 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2299 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
| 6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
| 7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 dom cdm 4716 Fun wfun 5308 Fn wfn 5309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-fn 5317 |
| This theorem is referenced by: fneu 5423 fnbrfvb 5666 fvelrnb 5674 fvelimab 5683 fniinfv 5685 fvco2 5696 eqfnfv 5725 fndmdif 5733 fndmin 5735 elpreima 5747 fniniseg 5748 fniniseg2 5750 fnniniseg2 5751 rexsupp 5752 fnopfv 5758 fnfvelrn 5760 rexrn 5765 ralrn 5766 fsn2 5802 fnressn 5818 eufnfv 5863 rexima 5871 ralima 5872 fniunfv 5879 dff13 5885 foeqcnvco 5907 f1eqcocnv 5908 isocnv2 5929 isoini 5935 f1oiso 5943 fnovex 6027 suppssof1 6226 offveqb 6228 1stexg 6303 2ndexg 6304 smoiso 6438 rdgruledefgg 6511 rdgivallem 6517 frectfr 6536 frecrdg 6544 en1 6941 fnfi 7091 ordiso2 7190 cc2lem 7440 slotex 13045 ressbas2d 13087 ressbasid 13089 strressid 13090 ressval3d 13091 prdsex 13288 prdsval 13292 prdsbaslemss 13293 prdsbas 13295 prdsplusg 13296 prdsmulr 13297 pwsbas 13311 pwselbasb 13312 pwssnf1o 13317 imasex 13324 imasival 13325 imasbas 13326 imasplusg 13327 imasmulr 13328 imasaddfn 13336 imasaddval 13337 imasaddf 13338 imasmulfn 13339 imasmulval 13340 imasmulf 13341 qusval 13342 qusex 13344 qusaddvallemg 13352 qusaddflemg 13353 qusaddval 13354 qusaddf 13355 qusmulval 13356 qusmulf 13357 xpsfeq 13364 xpsval 13371 ismgm 13376 plusffvalg 13381 grpidvalg 13392 fn0g 13394 fngsum 13407 igsumvalx 13408 gsumfzval 13410 gsumress 13414 gsum0g 13415 issgrp 13422 ismnddef 13437 issubmnd 13461 ress0g 13462 ismhm 13480 mhmex 13481 issubm 13491 0mhm 13505 grppropstrg 13538 grpinvfvalg 13561 grpinvval 13562 grpinvfng 13563 grpsubfvalg 13564 grpsubval 13565 grpressid 13580 grplactfval 13620 qusgrp2 13636 mulgfvalg 13644 mulgval 13645 mulgex 13646 mulgfng 13647 issubg 13696 subgex 13699 issubg2m 13712 isnsg 13725 releqgg 13743 eqgex 13744 eqgfval 13745 eqgen 13750 isghm 13766 ablressid 13858 mgptopng 13878 isrng 13883 rngressid 13903 qusrng 13907 dfur2g 13911 issrg 13914 isring 13949 ringidss 13978 ringressid 14012 qusring2 14015 reldvdsrsrg 14041 dvdsrvald 14042 dvdsrex 14047 unitgrp 14065 unitabl 14066 invrfvald 14071 unitlinv 14075 unitrinv 14076 dvrfvald 14082 rdivmuldivd 14093 invrpropdg 14098 dfrhm2 14103 rhmex 14106 rhmunitinv 14127 isnzr2 14133 issubrng 14148 issubrg 14170 subrgugrp 14189 rrgval 14211 isdomn 14218 aprval 14231 aprap 14235 islmod 14240 scaffvalg 14255 rmodislmod 14300 lssex 14303 lsssetm 14305 islssm 14306 islssmg 14307 islss3 14328 lspfval 14337 lspval 14339 lspcl 14340 lspex 14344 sraval 14386 sralemg 14387 srascag 14391 sravscag 14392 sraipg 14393 sraex 14395 rlmsubg 14407 rlmvnegg 14414 ixpsnbasval 14415 lidlex 14422 rspex 14423 lidlss 14425 lidlrsppropdg 14444 qusrhm 14477 mopnset 14501 psrval 14615 fnpsr 14616 psrbasg 14623 psrelbas 14624 psrplusgg 14627 psraddcl 14629 psr0cl 14630 psrnegcl 14632 psr1clfi 14637 mplvalcoe 14639 fnmpl 14642 mplplusgg 14652 vtxvalg 15802 vtxex 15804 |
| Copyright terms: Public domain | W3C validator |