![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfni | GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5314 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
3 | fndm 5316 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2247 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 dom cdm 4627 Fun wfun 5211 Fn wfn 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-fn 5220 |
This theorem is referenced by: fneu 5321 fnbrfvb 5557 fvelrnb 5564 fvelimab 5573 fniinfv 5575 fvco2 5586 eqfnfv 5614 fndmdif 5622 fndmin 5624 elpreima 5636 fniniseg 5637 fniniseg2 5639 fnniniseg2 5640 rexsupp 5641 fnopfv 5647 fnfvelrn 5649 rexrn 5654 ralrn 5655 fsn2 5691 fnressn 5703 eufnfv 5748 rexima 5756 ralima 5757 fniunfv 5763 dff13 5769 foeqcnvco 5791 f1eqcocnv 5792 isocnv2 5813 isoini 5819 f1oiso 5827 fnovex 5908 suppssof1 6100 offveqb 6102 1stexg 6168 2ndexg 6169 smoiso 6303 rdgruledefgg 6376 rdgivallem 6382 frectfr 6401 frecrdg 6409 en1 6799 fnfi 6936 ordiso2 7034 cc2lem 7265 slotex 12489 ressbas2d 12528 strressid 12530 ressval3d 12531 prdsex 12718 imasex 12726 imasival 12727 imasbas 12728 imasplusg 12729 imasmulr 12730 imasaddfn 12738 imasaddval 12739 imasaddf 12740 imasmulfn 12741 imasmulval 12742 imasmulf 12743 qusval 12744 qusaddvallemg 12752 qusaddflemg 12753 qusaddval 12754 qusaddf 12755 qusmulval 12756 qusmulf 12757 xpsfeq 12764 xpsval 12771 ismgm 12776 plusffvalg 12781 grpidvalg 12792 fn0g 12794 issgrp 12809 ismnddef 12819 issubmnd 12843 ress0g 12844 ismhm 12853 issubm 12863 0mhm 12873 grppropstrg 12895 grpinvfvalg 12915 grpinvval 12916 grpinvfng 12917 grpsubfvalg 12918 grpsubval 12919 grpressid 12931 grplactfval 12971 mulgfvalg 12985 mulgval 12986 mulgfng 12987 issubg 13033 subgex 13036 issubg2m 13049 isnsg 13062 releqgg 13080 eqgfval 13081 eqgen 13086 mgptopng 13139 dfur2g 13145 issrg 13148 isring 13183 ringidss 13212 ringressid 13238 reldvdsrsrg 13261 dvdsrvald 13262 dvdsrex 13267 unitgrp 13285 unitabl 13286 invrfvald 13291 unitlinv 13295 unitrinv 13296 dvrfvald 13302 rdivmuldivd 13313 invrpropdg 13318 issubrg 13342 subrgugrp 13361 aprval 13372 aprap 13376 islmod 13381 scaffvalg 13396 rmodislmod 13441 |
Copyright terms: Public domain | W3C validator |