| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | GIF version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
| Ref | Expression |
|---|---|
| funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5377 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
| 3 | fndm 5379 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2276 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
| 6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
| 7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 dom cdm 4680 Fun wfun 5271 Fn wfn 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 df-fn 5280 |
| This theorem is referenced by: fneu 5386 fnbrfvb 5629 fvelrnb 5636 fvelimab 5645 fniinfv 5647 fvco2 5658 eqfnfv 5687 fndmdif 5695 fndmin 5697 elpreima 5709 fniniseg 5710 fniniseg2 5712 fnniniseg2 5713 rexsupp 5714 fnopfv 5720 fnfvelrn 5722 rexrn 5727 ralrn 5728 fsn2 5764 fnressn 5780 eufnfv 5825 rexima 5833 ralima 5834 fniunfv 5841 dff13 5847 foeqcnvco 5869 f1eqcocnv 5870 isocnv2 5891 isoini 5897 f1oiso 5905 fnovex 5987 suppssof1 6186 offveqb 6188 1stexg 6263 2ndexg 6264 smoiso 6398 rdgruledefgg 6471 rdgivallem 6477 frectfr 6496 frecrdg 6504 en1 6901 fnfi 7050 ordiso2 7149 cc2lem 7391 slotex 12909 ressbas2d 12950 ressbasid 12952 strressid 12953 ressval3d 12954 prdsex 13151 prdsval 13155 prdsbaslemss 13156 prdsbas 13158 prdsplusg 13159 prdsmulr 13160 pwsbas 13174 pwselbasb 13175 pwssnf1o 13180 imasex 13187 imasival 13188 imasbas 13189 imasplusg 13190 imasmulr 13191 imasaddfn 13199 imasaddval 13200 imasaddf 13201 imasmulfn 13202 imasmulval 13203 imasmulf 13204 qusval 13205 qusex 13207 qusaddvallemg 13215 qusaddflemg 13216 qusaddval 13217 qusaddf 13218 qusmulval 13219 qusmulf 13220 xpsfeq 13227 xpsval 13234 ismgm 13239 plusffvalg 13244 grpidvalg 13255 fn0g 13257 fngsum 13270 igsumvalx 13271 gsumfzval 13273 gsumress 13277 gsum0g 13278 issgrp 13285 ismnddef 13300 issubmnd 13324 ress0g 13325 ismhm 13343 mhmex 13344 issubm 13354 0mhm 13368 grppropstrg 13401 grpinvfvalg 13424 grpinvval 13425 grpinvfng 13426 grpsubfvalg 13427 grpsubval 13428 grpressid 13443 grplactfval 13483 qusgrp2 13499 mulgfvalg 13507 mulgval 13508 mulgex 13509 mulgfng 13510 issubg 13559 subgex 13562 issubg2m 13575 isnsg 13588 releqgg 13606 eqgex 13607 eqgfval 13608 eqgen 13613 isghm 13629 ablressid 13721 mgptopng 13741 isrng 13746 rngressid 13766 qusrng 13770 dfur2g 13774 issrg 13777 isring 13812 ringidss 13841 ringressid 13875 qusring2 13878 reldvdsrsrg 13904 dvdsrvald 13905 dvdsrex 13910 unitgrp 13928 unitabl 13929 invrfvald 13934 unitlinv 13938 unitrinv 13939 dvrfvald 13945 rdivmuldivd 13956 invrpropdg 13961 dfrhm2 13966 rhmex 13969 rhmunitinv 13990 isnzr2 13996 issubrng 14011 issubrg 14033 subrgugrp 14052 rrgval 14074 isdomn 14081 aprval 14094 aprap 14098 islmod 14103 scaffvalg 14118 rmodislmod 14163 lssex 14166 lsssetm 14168 islssm 14169 islssmg 14170 islss3 14191 lspfval 14200 lspval 14202 lspcl 14203 lspex 14207 sraval 14249 sralemg 14250 srascag 14254 sravscag 14255 sraipg 14256 sraex 14258 rlmsubg 14270 rlmvnegg 14277 ixpsnbasval 14278 lidlex 14285 rspex 14286 lidlss 14288 lidlrsppropdg 14307 qusrhm 14340 mopnset 14364 psrval 14478 fnpsr 14479 psrbasg 14486 psrelbas 14487 psrplusgg 14490 psraddcl 14492 psr0cl 14493 psrnegcl 14495 psr1clfi 14500 mplvalcoe 14502 fnmpl 14505 mplplusgg 14515 vtxvalg 15665 vtxex 15667 |
| Copyright terms: Public domain | W3C validator |