Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfni | GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5285 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
3 | fndm 5287 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2236 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 4 | biimpar 295 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
7 | 2, 5, 6 | syl2anc 409 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 dom cdm 4604 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-fn 5191 |
This theorem is referenced by: fneu 5292 fnbrfvb 5527 fvelrnb 5534 fvelimab 5542 fniinfv 5544 fvco2 5555 eqfnfv 5583 fndmdif 5590 fndmin 5592 elpreima 5604 fniniseg 5605 fniniseg2 5607 fnniniseg2 5608 rexsupp 5609 fnopfv 5615 fnfvelrn 5617 rexrn 5622 ralrn 5623 fsn2 5659 fnressn 5671 eufnfv 5715 rexima 5723 ralima 5724 fniunfv 5730 dff13 5736 foeqcnvco 5758 f1eqcocnv 5759 isocnv2 5780 isoini 5786 f1oiso 5794 fnovex 5875 suppssof1 6067 offveqb 6069 1stexg 6135 2ndexg 6136 smoiso 6270 rdgruledefgg 6343 rdgivallem 6349 frectfr 6368 frecrdg 6376 en1 6765 fnfi 6902 ordiso2 7000 cc2lem 7207 slotex 12421 ismgm 12588 plusffvalg 12593 grpidvalg 12604 fn0g 12606 issgrp 12621 |
Copyright terms: Public domain | W3C validator |