| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | GIF version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
| Ref | Expression |
|---|---|
| funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5418 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
| 3 | fndm 5420 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2299 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
| 6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
| 7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 dom cdm 4719 Fun wfun 5312 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-fn 5321 |
| This theorem is referenced by: fneu 5427 fnbrfvb 5674 fvelrnb 5683 fvelimab 5692 fniinfv 5694 fvco2 5705 eqfnfv 5734 fndmdif 5742 fndmin 5744 elpreima 5756 fniniseg 5757 fniniseg2 5759 fnniniseg2 5760 rexsupp 5761 fnopfv 5767 fnfvelrn 5769 rexrn 5774 ralrn 5775 fsn2 5811 fnressn 5829 eufnfv 5874 rexima 5884 ralima 5885 fniunfv 5892 dff13 5898 foeqcnvco 5920 f1eqcocnv 5921 isocnv2 5942 isoini 5948 f1oiso 5956 fnovex 6040 suppssof1 6242 offveqb 6244 1stexg 6319 2ndexg 6320 smoiso 6454 rdgruledefgg 6527 rdgivallem 6533 frectfr 6552 frecrdg 6560 en1 6959 fnfi 7111 ordiso2 7210 cc2lem 7460 slotex 13067 ressbas2d 13109 ressbasid 13111 strressid 13112 ressval3d 13113 prdsex 13310 prdsval 13314 prdsbaslemss 13315 prdsbas 13317 prdsplusg 13318 prdsmulr 13319 pwsbas 13333 pwselbasb 13334 pwssnf1o 13339 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 imasaddfn 13358 imasaddval 13359 imasaddf 13360 imasmulfn 13361 imasmulval 13362 imasmulf 13363 qusval 13364 qusex 13366 qusaddvallemg 13374 qusaddflemg 13375 qusaddval 13376 qusaddf 13377 qusmulval 13378 qusmulf 13379 xpsfeq 13386 xpsval 13393 ismgm 13398 plusffvalg 13403 grpidvalg 13414 fn0g 13416 fngsum 13429 igsumvalx 13430 gsumfzval 13432 gsumress 13436 gsum0g 13437 issgrp 13444 ismnddef 13459 issubmnd 13483 ress0g 13484 ismhm 13502 mhmex 13503 issubm 13513 0mhm 13527 grppropstrg 13560 grpinvfvalg 13583 grpinvval 13584 grpinvfng 13585 grpsubfvalg 13586 grpsubval 13587 grpressid 13602 grplactfval 13642 qusgrp2 13658 mulgfvalg 13666 mulgval 13667 mulgex 13668 mulgfng 13669 issubg 13718 subgex 13721 issubg2m 13734 isnsg 13747 releqgg 13765 eqgex 13766 eqgfval 13767 eqgen 13772 isghm 13788 ablressid 13880 mgptopng 13900 isrng 13905 rngressid 13925 qusrng 13929 dfur2g 13933 issrg 13936 isring 13971 ringidss 14000 ringressid 14034 qusring2 14037 dvdsrvald 14065 dvdsrex 14070 unitgrp 14088 unitabl 14089 invrfvald 14094 unitlinv 14098 unitrinv 14099 dvrfvald 14105 rdivmuldivd 14116 invrpropdg 14121 dfrhm2 14126 rhmex 14129 rhmunitinv 14150 isnzr2 14156 issubrng 14171 issubrg 14193 subrgugrp 14212 rrgval 14234 isdomn 14241 aprval 14254 aprap 14258 islmod 14263 scaffvalg 14278 rmodislmod 14323 lssex 14326 lsssetm 14328 islssm 14329 islssmg 14330 islss3 14351 lspfval 14360 lspval 14362 lspcl 14363 lspex 14367 sraval 14409 sralemg 14410 srascag 14414 sravscag 14415 sraipg 14416 sraex 14418 rlmsubg 14430 rlmvnegg 14437 ixpsnbasval 14438 lidlex 14445 rspex 14446 lidlss 14448 lidlrsppropdg 14467 qusrhm 14500 mopnset 14524 psrval 14638 fnpsr 14639 psrbasg 14646 psrelbas 14647 psrplusgg 14650 psraddcl 14652 psr0cl 14653 psrnegcl 14655 psr1clfi 14660 mplvalcoe 14662 fnmpl 14665 mplplusgg 14675 vtxvalg 15825 vtxex 15827 |
| Copyright terms: Public domain | W3C validator |