| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | GIF version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
| Ref | Expression |
|---|---|
| funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5356 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
| 3 | fndm 5358 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2266 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
| 6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
| 7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-fn 5262 |
| This theorem is referenced by: fneu 5363 fnbrfvb 5602 fvelrnb 5609 fvelimab 5618 fniinfv 5620 fvco2 5631 eqfnfv 5660 fndmdif 5668 fndmin 5670 elpreima 5682 fniniseg 5683 fniniseg2 5685 fnniniseg2 5686 rexsupp 5687 fnopfv 5693 fnfvelrn 5695 rexrn 5700 ralrn 5701 fsn2 5737 fnressn 5749 eufnfv 5794 rexima 5802 ralima 5803 fniunfv 5810 dff13 5816 foeqcnvco 5838 f1eqcocnv 5839 isocnv2 5860 isoini 5866 f1oiso 5874 fnovex 5956 suppssof1 6155 offveqb 6157 1stexg 6227 2ndexg 6228 smoiso 6362 rdgruledefgg 6435 rdgivallem 6441 frectfr 6460 frecrdg 6468 en1 6860 fnfi 7004 ordiso2 7103 cc2lem 7336 slotex 12716 ressbas2d 12757 ressbasid 12759 strressid 12760 ressval3d 12761 prdsex 12957 prdsval 12961 prdsbaslemss 12962 prdsbas 12964 prdsplusg 12965 prdsmulr 12966 imasex 12974 imasival 12975 imasbas 12976 imasplusg 12977 imasmulr 12978 imasaddfn 12986 imasaddval 12987 imasaddf 12988 imasmulfn 12989 imasmulval 12990 imasmulf 12991 qusval 12992 qusex 12994 qusaddvallemg 13002 qusaddflemg 13003 qusaddval 13004 qusaddf 13005 qusmulval 13006 qusmulf 13007 xpsfeq 13014 xpsval 13021 ismgm 13026 plusffvalg 13031 grpidvalg 13042 fn0g 13044 fngsum 13057 igsumvalx 13058 gsumfzval 13060 gsumress 13064 gsum0g 13065 issgrp 13072 ismnddef 13085 issubmnd 13109 ress0g 13110 ismhm 13119 mhmex 13120 issubm 13130 0mhm 13144 grppropstrg 13177 grpinvfvalg 13200 grpinvval 13201 grpinvfng 13202 grpsubfvalg 13203 grpsubval 13204 grpressid 13219 grplactfval 13259 qusgrp2 13269 mulgfvalg 13277 mulgval 13278 mulgex 13279 mulgfng 13280 issubg 13329 subgex 13332 issubg2m 13345 isnsg 13358 releqgg 13376 eqgex 13377 eqgfval 13378 eqgen 13383 isghm 13399 ablressid 13491 mgptopng 13511 isrng 13516 rngressid 13536 qusrng 13540 dfur2g 13544 issrg 13547 isring 13582 ringidss 13611 ringressid 13645 qusring2 13648 reldvdsrsrg 13674 dvdsrvald 13675 dvdsrex 13680 unitgrp 13698 unitabl 13699 invrfvald 13704 unitlinv 13708 unitrinv 13709 dvrfvald 13715 rdivmuldivd 13726 invrpropdg 13731 dfrhm2 13736 rhmex 13739 rhmunitinv 13760 isnzr2 13766 issubrng 13781 issubrg 13803 subrgugrp 13822 rrgval 13844 isdomn 13851 aprval 13864 aprap 13868 islmod 13873 scaffvalg 13888 rmodislmod 13933 lssex 13936 lsssetm 13938 islssm 13939 islssmg 13940 islss3 13961 lspfval 13970 lspval 13972 lspcl 13973 lspex 13977 sraval 14019 sralemg 14020 srascag 14024 sravscag 14025 sraipg 14026 sraex 14028 rlmsubg 14040 rlmvnegg 14047 ixpsnbasval 14048 lidlex 14055 rspex 14056 lidlss 14058 lidlrsppropdg 14077 qusrhm 14110 mopnset 14134 psrval 14246 fnpsr 14247 psrbasg 14253 psrelbas 14254 psrplusgg 14256 psraddcl 14258 |
| Copyright terms: Public domain | W3C validator |