![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfni | GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5352 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
3 | fndm 5354 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2263 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 dom cdm 4660 Fun wfun 5249 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-fn 5258 |
This theorem is referenced by: fneu 5359 fnbrfvb 5598 fvelrnb 5605 fvelimab 5614 fniinfv 5616 fvco2 5627 eqfnfv 5656 fndmdif 5664 fndmin 5666 elpreima 5678 fniniseg 5679 fniniseg2 5681 fnniniseg2 5682 rexsupp 5683 fnopfv 5689 fnfvelrn 5691 rexrn 5696 ralrn 5697 fsn2 5733 fnressn 5745 eufnfv 5790 rexima 5798 ralima 5799 fniunfv 5806 dff13 5812 foeqcnvco 5834 f1eqcocnv 5835 isocnv2 5856 isoini 5862 f1oiso 5870 fnovex 5952 suppssof1 6150 offveqb 6152 1stexg 6222 2ndexg 6223 smoiso 6357 rdgruledefgg 6430 rdgivallem 6436 frectfr 6455 frecrdg 6463 en1 6855 fnfi 6997 ordiso2 7096 cc2lem 7328 slotex 12648 ressbas2d 12689 ressbasid 12691 strressid 12692 ressval3d 12693 prdsex 12883 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfn 12903 imasaddval 12904 imasaddf 12905 imasmulfn 12906 imasmulval 12907 imasmulf 12908 qusval 12909 qusex 12911 qusaddvallemg 12919 qusaddflemg 12920 qusaddval 12921 qusaddf 12922 qusmulval 12923 qusmulf 12924 xpsfeq 12931 xpsval 12938 ismgm 12943 plusffvalg 12948 grpidvalg 12959 fn0g 12961 fngsum 12974 igsumvalx 12975 gsumfzval 12977 gsumress 12981 gsum0g 12982 issgrp 12989 ismnddef 13002 issubmnd 13026 ress0g 13027 ismhm 13036 mhmex 13037 issubm 13047 0mhm 13061 grppropstrg 13094 grpinvfvalg 13117 grpinvval 13118 grpinvfng 13119 grpsubfvalg 13120 grpsubval 13121 grpressid 13136 grplactfval 13176 qusgrp2 13186 mulgfvalg 13194 mulgval 13195 mulgex 13196 mulgfng 13197 issubg 13246 subgex 13249 issubg2m 13262 isnsg 13275 releqgg 13293 eqgex 13294 eqgfval 13295 eqgen 13300 isghm 13316 ablressid 13408 mgptopng 13428 isrng 13433 rngressid 13453 qusrng 13457 dfur2g 13461 issrg 13464 isring 13499 ringidss 13528 ringressid 13562 qusring2 13565 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrex 13597 unitgrp 13615 unitabl 13616 invrfvald 13621 unitlinv 13625 unitrinv 13626 dvrfvald 13632 rdivmuldivd 13643 invrpropdg 13648 dfrhm2 13653 rhmex 13656 rhmunitinv 13677 isnzr2 13683 issubrng 13698 issubrg 13720 subrgugrp 13739 rrgval 13761 isdomn 13768 aprval 13781 aprap 13785 islmod 13790 scaffvalg 13805 rmodislmod 13850 lssex 13853 lsssetm 13855 islssm 13856 islssmg 13857 islss3 13878 lspfval 13887 lspval 13889 lspcl 13890 lspex 13894 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 rlmsubg 13957 rlmvnegg 13964 ixpsnbasval 13965 lidlex 13972 rspex 13973 lidlss 13975 lidlrsppropdg 13994 qusrhm 14027 mopnset 14051 psrval 14163 fnpsr 14164 psrbasg 14170 psrelbas 14171 psrplusgg 14173 psraddcl 14175 |
Copyright terms: Public domain | W3C validator |