![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfni | GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5325 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun 𝐹) |
3 | fndm 5327 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2257 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 4 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
6 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
7 | 2, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 dom cdm 4638 Fun wfun 5222 Fn wfn 5223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 df-fn 5231 |
This theorem is referenced by: fneu 5332 fnbrfvb 5569 fvelrnb 5576 fvelimab 5585 fniinfv 5587 fvco2 5598 eqfnfv 5626 fndmdif 5634 fndmin 5636 elpreima 5648 fniniseg 5649 fniniseg2 5651 fnniniseg2 5652 rexsupp 5653 fnopfv 5659 fnfvelrn 5661 rexrn 5666 ralrn 5667 fsn2 5703 fnressn 5715 eufnfv 5760 rexima 5768 ralima 5769 fniunfv 5776 dff13 5782 foeqcnvco 5804 f1eqcocnv 5805 isocnv2 5826 isoini 5832 f1oiso 5840 fnovex 5921 suppssof1 6113 offveqb 6115 1stexg 6181 2ndexg 6182 smoiso 6316 rdgruledefgg 6389 rdgivallem 6395 frectfr 6414 frecrdg 6422 en1 6812 fnfi 6949 ordiso2 7047 cc2lem 7278 slotex 12502 ressbas2d 12541 ressbasid 12543 strressid 12544 ressval3d 12545 prdsex 12735 imasex 12743 imasival 12744 imasbas 12745 imasplusg 12746 imasmulr 12747 imasaddfn 12755 imasaddval 12756 imasaddf 12757 imasmulfn 12758 imasmulval 12759 imasmulf 12760 qusval 12761 qusex 12763 qusaddvallemg 12770 qusaddflemg 12771 qusaddval 12772 qusaddf 12773 qusmulval 12774 qusmulf 12775 xpsfeq 12782 xpsval 12789 ismgm 12794 plusffvalg 12799 grpidvalg 12810 fn0g 12812 issgrp 12827 ismnddef 12840 issubmnd 12864 ress0g 12865 ismhm 12874 issubm 12884 0mhm 12894 grppropstrg 12916 grpinvfvalg 12938 grpinvval 12939 grpinvfng 12940 grpsubfvalg 12941 grpsubval 12942 grpressid 12957 grplactfval 12997 qusgrp2 13007 mulgfvalg 13015 mulgval 13016 mulgex 13017 mulgfng 13018 issubg 13064 subgex 13067 issubg2m 13080 isnsg 13093 releqgg 13111 eqgex 13112 eqgfval 13113 eqgen 13118 ablressid 13169 mgptopng 13179 isrng 13184 rngressid 13204 dfur2g 13209 issrg 13212 isring 13247 ringidss 13276 ringressid 13306 qusring2 13309 reldvdsrsrg 13335 dvdsrvald 13336 dvdsrex 13341 unitgrp 13359 unitabl 13360 invrfvald 13365 unitlinv 13369 unitrinv 13370 dvrfvald 13376 rdivmuldivd 13387 invrpropdg 13392 issubrng 13414 issubrg 13436 subrgugrp 13455 aprval 13466 aprap 13470 islmod 13475 scaffvalg 13490 rmodislmod 13535 lssex 13538 lsssetm 13540 islssm 13541 islssmg 13542 islss3 13563 lspfval 13572 lspval 13574 lspcl 13575 lspex 13579 sraval 13621 sralemg 13622 srascag 13626 sravscag 13627 sraipg 13628 sraex 13630 rlmsubg 13642 rlmvnegg 13649 ixpsnbasval 13650 lidlex 13657 rspex 13658 lidlss 13660 |
Copyright terms: Public domain | W3C validator |