HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopelf 5301 The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
 
Theoremfun 5302 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
 
Theoremfun2 5303 The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 
Theoremfnfco 5304 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfssres 5305 Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfssresd 5306 Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶):𝐶𝐵)
 
Theoremfssres2 5307 Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
(((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfresin 5308 An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
(𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
 
Theoremresasplitss 5309 If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))
 
Theoremfcoi1 5310 Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
 
Theoremfcoi2 5311 Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
 
Theoremfeu 5312* There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
 
Theoremfcnvres 5313 The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
(𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
 
Theoremfimacnvdisj 5314 The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfintm 5315* Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
𝑥 𝑥𝐵       (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
 
Theoremfin 5316 Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))
 
Theoremfabexg 5317* Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}       ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
 
Theoremfabex 5318* Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}       𝐹 ∈ V
 
Theoremdmfex 5319 If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
 
Theoremf0 5320 The empty function. (Contributed by NM, 14-Aug-1999.)
∅:∅⟶𝐴
 
Theoremf00 5321 A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
(𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf0bi 5322 A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
(𝐹:∅⟶𝑋𝐹 = ∅)
 
Theoremf0dom0 5323 A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
(𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
 
Theoremf0rn0 5324* If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
 
Theoremfconst 5325 A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
𝐵 ∈ V       (𝐴 × {𝐵}):𝐴⟶{𝐵}
 
Theoremfconstg 5326 A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
(𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
 
Theoremfnconstg 5327 A cross product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
(𝐵𝑉 → (𝐴 × {𝐵}) Fn 𝐴)
 
Theoremfconst6g 5328 Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
 
Theoremfconst6 5329 A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
𝐵𝐶       (𝐴 × {𝐵}):𝐴𝐶
 
Theoremf1eq1 5330 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
 
Theoremf1eq2 5331 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
 
Theoremf1eq3 5332 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
 
Theoremnff1 5333 Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴1-1𝐵
 
Theoremdff12 5334* Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
 
Theoremf1f 5335 A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
 
Theoremf1rn 5336 The range of a one-to-one mapping. (Contributed by BJ, 6-Jul-2022.)
(𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
 
Theoremf1fn 5337 A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
 
Theoremf1fun 5338 A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Fun 𝐹)
 
Theoremf1rel 5339 A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Rel 𝐹)
 
Theoremf1dm 5340 The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
 
Theoremf1ss 5341 A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssr 5342 Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.)
((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ff1 5343 If a function is one-to-one from A to B and is also a function from A to C, then it is a one-to-one function from A to C. (Contributed by BJ, 4-Jul-2022.)
((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssres 5344 A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
 
Theoremf1resf1 5345 The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
(((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
 
Theoremf1cnvcnv 5346 Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
(𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremf1co 5347 Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
 
Theoremfoeq1 5348 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
 
Theoremfoeq2 5349 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
 
Theoremfoeq3 5350 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
 
Theoremnffo 5351 Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴onto𝐵
 
Theoremfof 5352 An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
 
Theoremfofun 5353 An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴onto𝐵 → Fun 𝐹)
 
Theoremfofn 5354 An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
(𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
 
Theoremforn 5355 The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
 
Theoremdffo2 5356 Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
 
Theoremfoima 5357 The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
(𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
 
Theoremdffn4 5358 A function maps onto its range. (Contributed by NM, 10-May-1998.)
(𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
 
Theoremfunforn 5359 A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
(Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
 
Theoremfodmrnu 5360 An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremfores 5361 Restriction of a function. (Contributed by NM, 4-Mar-1997.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
 
Theoremfoco 5362 Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
 
Theoremf1oeq1 5363 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
 
Theoremf1oeq2 5364 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
 
Theoremf1oeq3 5365 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
 
Theoremf1oeq23 5366 Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
 
Theoremf1eq123d 5367 Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))
 
Theoremfoeq123d 5368 Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
 
Theoremf1oeq123d 5369 Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
 
Theoremf1oeq2d 5370 Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
 
Theoremf1oeq3d 5371 Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
 
Theoremnff1o 5372 Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴1-1-onto𝐵
 
Theoremf1of1 5373 A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
 
Theoremf1of 5374 A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
 
Theoremf1ofn 5375 A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
 
Theoremf1ofun 5376 A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
 
Theoremf1orel 5377 A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
 
Theoremf1odm 5378 The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
 
Theoremdff1o2 5379 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
 
Theoremdff1o3 5380 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
 
Theoremf1ofo 5381 A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
 
Theoremdff1o4 5382 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremdff1o5 5383 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
 
Theoremf1orn 5384 A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
(𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
 
Theoremf1f1orn 5385 A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
(𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
 
Theoremf1oabexg 5386* The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}       ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
 
Theoremf1ocnv 5387 The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
 
Theoremf1ocnvb 5388 A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
(Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
 
Theoremf1ores 5389 The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
 
Theoremf1orescnv 5390 The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
 
Theoremf1imacnv 5391 Preimage of an image. (Contributed by NM, 30-Sep-2004.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoimacnv 5392 A reverse version of f1imacnv 5391. (Contributed by Jeff Hankins, 16-Jul-2009.)
((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoun 5393 The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
(((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
 
Theoremf1oun 5394 The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
(((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
 
Theoremfun11iun 5395* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   𝐵 ∈ V       (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
 
Theoremresdif 5396 The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
 
Theoremf1oco 5397 Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
 
Theoremf1cnv 5398 The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
 
Theoremfuncocnv2 5399 Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremfococnv2 5400 The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13439
  Copyright terms: Public domain < Previous  Next >