HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 129)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1of 5301 A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
 
Theoremf1ofn 5302 A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
 
Theoremf1ofun 5303 A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
 
Theoremf1orel 5304 A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
 
Theoremf1odm 5305 The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
 
Theoremdff1o2 5306 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
 
Theoremdff1o3 5307 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
 
Theoremf1ofo 5308 A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
 
Theoremdff1o4 5309 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremdff1o5 5310 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
 
Theoremf1orn 5311 A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
(𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
 
Theoremf1f1orn 5312 A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
(𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
 
Theoremf1oabexg 5313* The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}       ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
 
Theoremf1ocnv 5314 The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
 
Theoremf1ocnvb 5315 A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
(Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
 
Theoremf1ores 5316 The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
 
Theoremf1orescnv 5317 The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
 
Theoremf1imacnv 5318 Preimage of an image. (Contributed by NM, 30-Sep-2004.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoimacnv 5319 A reverse version of f1imacnv 5318. (Contributed by Jeff Hankins, 16-Jul-2009.)
((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoun 5320 The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
(((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
 
Theoremf1oun 5321 The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
(((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
 
Theoremfun11iun 5322* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   𝐵 ∈ V       (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
 
Theoremresdif 5323 The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
 
Theoremf1oco 5324 Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
 
Theoremf1cnv 5325 The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
 
Theoremfuncocnv2 5326 Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremfococnv2 5327 The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
 
Theoremf1ococnv2 5328 The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
 
Theoremf1cocnv2 5329 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremf1ococnv1 5330 The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremf1cocnv1 5331 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremfuncoeqres 5332 Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
 
Theoremffoss 5333* Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
𝐹 ∈ V       (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
 
Theoremf11o 5334* Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
𝐹 ∈ V       (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
 
Theoremf10 5335 The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
∅:∅–1-1𝐴
 
Theoremf1o00 5336 One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
(𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremfo00 5337 Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
(𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf1o0 5338 One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
∅:∅–1-1-onto→∅
 
Theoremf1oi 5339 A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
( I ↾ 𝐴):𝐴1-1-onto𝐴
 
Theoremf1ovi 5340 The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
I :V–1-1-onto→V
 
Theoremf1osn 5341 A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
 
Theoremf1osng 5342 A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
 
Theoremf1oprg 5343 An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
 
Theoremtz6.12-2 5344* Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
 
Theoremfveu 5345* The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
(∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
 
Theorembrprcneu 5346* If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
 
Theoremfvprc 5347 A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
𝐴 ∈ V → (𝐹𝐴) = ∅)
 
Theoremfv2 5348* Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
 
Theoremdffv3g 5349* A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
(𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
 
Theoremdffv4g 5350* The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 4844), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
(𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
 
Theoremelfv 5351* Membership in a function value. (Contributed by NM, 30-Apr-2004.)
(𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
 
Theoremfveq1 5352 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2 5353 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → (𝐹𝐴) = (𝐹𝐵))
 
Theoremfveq1i 5354 Equality inference for function value. (Contributed by NM, 2-Sep-2003.)
𝐹 = 𝐺       (𝐹𝐴) = (𝐺𝐴)
 
Theoremfveq1d 5355 Equality deduction for function value. (Contributed by NM, 2-Sep-2003.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2i 5356 Equality inference for function value. (Contributed by NM, 28-Jul-1999.)
𝐴 = 𝐵       (𝐹𝐴) = (𝐹𝐵)
 
Theoremfveq2d 5357 Equality deduction for function value. (Contributed by NM, 29-May-1999.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐹𝐵))
 
Theorem2fveq3 5358 Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
 
Theoremfveq12i 5359 Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
𝐹 = 𝐺    &   𝐴 = 𝐵       (𝐹𝐴) = (𝐺𝐵)
 
Theoremfveq12d 5360 Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐺𝐵))
 
Theoremfveqeq2d 5361 Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremfveqeq2 5362 Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
(𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremnffv 5363 Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹𝐴)
 
Theoremnffvmpt1 5364* Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑥((𝑥𝐴𝐵)‘𝐶)
 
Theoremnffvd 5365 Deduction version of bound-variable hypothesis builder nffv 5363. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐹)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝐹𝐴))
 
Theoremfunfveu 5366* A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfvss 5367* The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.)
(∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremfvssunirng 5368 The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremrelfvssunirn 5369 The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremfunfvex 5370 The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
 
Theoremrelrnfvex 5371 If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvexg 5372 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
 
Theoremfvex 5373 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
𝐹𝑉    &   𝐴𝑊       (𝐹𝐴) ∈ V
 
Theoremsefvex 5374 If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvifdc 5375 Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
(DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))
 
Theoremfv3 5376* Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
 
Theoremfvres 5377 The value of a restricted function. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfvresd 5378 The value of a restricted function, deduction version of fvres 5377. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴𝐵)       (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfunssfv 5379 The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremtz6.12-1 5380* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12 5381* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12f 5382* Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
𝑦𝐹       ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12c 5383* Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
(∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
 
Theoremndmfvg 5384 The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)
 
Theoremrelelfvdm 5385 If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
 
Theoremnfvres 5386 The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
 
Theoremnfunsn 5387 If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
 
Theorem0fv 5388 Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
(∅‘𝐴) = ∅
 
Theoremcsbfv12g 5389 Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfv2g 5390* Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfvg 5391* Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
 
Theoremfunbrfv 5392 The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
 
Theoremfunopfv 5393 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
(Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 
Theoremfnbrfvb 5394 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
 
Theoremfnopfvb 5395 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
 
Theoremfunbrfvb 5396 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunopfvb 5397 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremfunbrfv2b 5398 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
(Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
 
Theoremdffn5im 5399* Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5097 and dmmptss 4971. (Contributed by Jim Kingdon, 31-Dec-2018.)
(𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfnrnfv 5400* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >