| Intuitionistic Logic Explorer Theorem List (p. 54 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iotabidv 5301* | Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
| Theorem | iotabii 5302 | Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
| Theorem | iotacl 5303 |
Membership law for descriptions.
This can useful for expanding an unbounded iota-based definition (see df-iota 5278). (Contributed by Andrew Salmon, 1-Aug-2011.) |
| ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
| Theorem | iota2df 5304 | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | iota2d 5305* | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | eliota 5306* | An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.) |
| ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
| Theorem | eliotaeu 5307 | An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) |
| ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | ||
| Theorem | iota2 5308* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
| Theorem | sniota 5309 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
| Theorem | iotam 5310* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
| Theorem | csbiotag 5311* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) | ||
| Syntax | wfun 5312 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
| wff Fun 𝐴 | ||
| Syntax | wfn 5313 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
| wff 𝐴 Fn 𝐵 | ||
| Syntax | wf 5314 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
| wff 𝐹:𝐴⟶𝐵 | ||
| Syntax | wf1 5315 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1→𝐵 | ||
| Syntax | wfo 5316 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–onto→𝐵 | ||
| Syntax | wf1o 5317 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1-onto→𝐵 | ||
| Syntax | cfv 5318 | Extend the definition of a class to include the value of a function. (Read: The value of 𝐹 at 𝐴, or "𝐹 of 𝐴.") |
| class (𝐹‘𝐴) | ||
| Syntax | wiso 5319 | Extend the definition of a wff to include the isomorphism property. (Read: 𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵.) |
| wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
| Definition | df-fun 5320 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 5350). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4145 with the maps-to notation (see df-mpt 4147). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5321), a function with a given domain and codomain (df-f 5322), a one-to-one function (df-f1 5323), an onto function (df-fo 5324), or a one-to-one onto function (df-f1o 5325). For alternate definitions, see dffun2 5328, dffun4 5329, dffun6 5332, dffun7 5345, dffun8 5346, and dffun9 5347. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
| Definition | df-fn 5321 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
| Definition | df-f 5322 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
| Definition | df-f1 5323 | Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
| Definition | df-fo 5324 | Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
| Definition | df-f1o 5325 | Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
| Definition | df-fv 5326* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, ( I ‘∅) = ∅. Typically, function 𝐹 is defined using maps-to notation (see df-mpt 4147), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9. We will later define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. (Revised by Scott Fenton, 6-Oct-2017.) |
| ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
| Definition | df-isom 5327* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
| Theorem | dffun2 5328* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
| Theorem | dffun4 5329* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
| Theorem | dffun5r 5330* | A way of proving a relation is a function, analogous to mo2r 2130. (Contributed by Jim Kingdon, 27-May-2020.) |
| ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → Fun 𝐴) | ||
| Theorem | dffun6f 5331* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun6 5332* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) |
| ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
| Theorem | funmo 5333* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) |
| ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | dffun4f 5334* | Definition of function like dffun4 5329 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
| Theorem | funrel 5335 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 → Rel 𝐴) | ||
| Theorem | 0nelfun 5336 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
| ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
| Theorem | funss 5337 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
| Theorem | funeq 5338 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
| Theorem | funeqi 5339 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (Fun 𝐴 ↔ Fun 𝐵) | ||
| Theorem | funeqd 5340 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
| Theorem | nffun 5341 | Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥Fun 𝐹 | ||
| Theorem | sbcfung 5342 | Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) | ||
| Theorem | funeu 5343* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
| Theorem | funeu2 5344* | There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) | ||
| Theorem | dffun7 5345* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5346 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun8 5346* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5345. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun9 5347* | Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) | ||
| Theorem | funfn 5348 | An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | ||
| Theorem | funfnd 5349 | A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → Fun 𝐴) ⇒ ⊢ (𝜑 → 𝐴 Fn dom 𝐴) | ||
| Theorem | funi 5350 | The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
| ⊢ Fun I | ||
| Theorem | nfunv 5351 | The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
| ⊢ ¬ Fun V | ||
| Theorem | funopg 5352 | A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ Fun 〈𝐴, 𝐵〉) → 𝐴 = 𝐵) | ||
| Theorem | funopab 5353* | A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
| ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) | ||
| Theorem | funopabeq 5354* | A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | ||
| Theorem | funopab4 5355* | A class of ordered pairs of values in the form used by df-mpt 4147 is a function. (Contributed by NM, 17-Feb-2013.) |
| ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} | ||
| Theorem | funmpt 5356 | A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Theorem | funmpt2 5357 | Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ Fun 𝐹 | ||
| Theorem | funco 5358 | The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
| Theorem | funres 5359 | A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | ||
| Theorem | funssres 5360 | The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | ||
| Theorem | fun2ssres 5361 | Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) | ||
| Theorem | funun 5362 | The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹 ∪ 𝐺)) | ||
| Theorem | fununmo 5363* | If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
| ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | ||
| Theorem | fununfun 5364 | If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
| ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) | ||
| Theorem | fundif 5365 | A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) | ||
| Theorem | funcnvsn 5366 | The converse singleton of an ordered pair is a function. This is equivalent to funsn 5369 via cnvsn 5211, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
| ⊢ Fun ◡{〈𝐴, 𝐵〉} | ||
| Theorem | funsng 5367 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | ||
| Theorem | fnsng 5368 | Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) | ||
| Theorem | funsn 5369 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ Fun {〈𝐴, 𝐵〉} | ||
| Theorem | funinsn 5370 | A function based on the singleton of an ordered pair. Unlike funsng 5367, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.) |
| ⊢ Fun ({〈𝐴, 𝐵〉} ∩ (𝑉 × 𝑊)) | ||
| Theorem | funprg 5371 | A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
| Theorem | funtpg 5372 | A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → Fun {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}) | ||
| Theorem | funpr 5373 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
| Theorem | funtp 5374 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) | ||
| Theorem | fnsn 5375 | Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} | ||
| Theorem | fnprg 5376 | Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) | ||
| Theorem | fntpg 5377 | Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉} Fn {𝑋, 𝑌, 𝑍}) | ||
| Theorem | fntp 5378 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) | ||
| Theorem | fun0 5379 | The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| ⊢ Fun ∅ | ||
| Theorem | funcnvcnv 5380 | The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| ⊢ (Fun 𝐴 → Fun ◡◡𝐴) | ||
| Theorem | funcnv2 5381* | A simpler equivalence for single-rooted (see funcnv 5382). (Contributed by NM, 9-Aug-2004.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) | ||
| Theorem | funcnv 5382* | The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5381 for a simpler version. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | ||
| Theorem | funcnv3 5383* | A condition showing a class is single-rooted. (See funcnv 5382). (Contributed by NM, 26-May-2006.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) | ||
| Theorem | funcnveq 5384* | Another way of expressing that a class is single-rooted. Counterpart to dffun2 5328. (Contributed by Jim Kingdon, 24-Dec-2018.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) | ||
| Theorem | fun2cnv 5385* | The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | ||
| Theorem | svrelfun 5386 | A single-valued relation is a function. (See fun2cnv 5385 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) | ||
| Theorem | fncnv 5387* | Single-rootedness (see funcnv 5382) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.) |
| ⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) | ||
| Theorem | fun11 5388* | Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.) |
| ⊢ ((Fun ◡◡𝐴 ∧ Fun ◡𝐴) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) | ||
| Theorem | fununi 5389* | The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) | ||
| Theorem | funcnvuni 5390* | The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5382 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | ||
| Theorem | fun11uni 5391* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) | ||
| Theorem | funin 5392 | The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) | ||
| Theorem | funres11 5393 | The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
| ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) | ||
| Theorem | funcnvres 5394 | The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
| ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) | ||
| Theorem | cnvresid 5395 | Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | ||
| Theorem | funcnvres2 5396 | The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
| ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | ||
| Theorem | funimacnv 5397 | The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
| ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | ||
| Theorem | funimass1 5398 | A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) | ||
| Theorem | funimass2 5399 | A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) | ||
| Theorem | imadiflem 5400 | One direction of imadif 5401. This direction does not require Fun ◡𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.) |
| ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |