ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct GIF version

Theorem edgstruct 15745
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
Assertion
Ref Expression
edgstruct ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)

Proof of Theorem edgstruct
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-edg 15740 . . 3 Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
2 fveq2 5594 . . . 4 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
32rneqd 4921 . . 3 (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
4 edgstruct.s . . . 4 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
5 basendxnn 12973 . . . . . 6 (Base‘ndx) ∈ ℕ
6 simpl 109 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝑉𝑊)
7 opexg 4285 . . . . . 6 (((Base‘ndx) ∈ ℕ ∧ 𝑉𝑊) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
85, 6, 7sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
9 edgfndxnn 15692 . . . . . 6 (.ef‘ndx) ∈ ℕ
10 simpr 110 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝐸𝑋)
11 opexg 4285 . . . . . 6 (((.ef‘ndx) ∈ ℕ ∧ 𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
129, 10, 11sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
13 prexg 4266 . . . . 5 ((⟨(Base‘ndx), 𝑉⟩ ∈ V ∧ ⟨(.ef‘ndx), 𝐸⟩ ∈ V) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
148, 12, 13syl2anc 411 . . . 4 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
154, 14eqeltrid 2293 . . 3 ((𝑉𝑊𝐸𝑋) → 𝐺 ∈ V)
165elexi 2786 . . . . . 6 (Base‘ndx) ∈ V
179elexi 2786 . . . . . 6 (.ef‘ndx) ∈ V
185a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ∈ ℕ)
199a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (.ef‘ndx) ∈ ℕ)
20 basendxnedgfndx 15695 . . . . . . . . . 10 (Base‘ndx) ≠ (.ef‘ndx)
2120a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ≠ (.ef‘ndx))
22 fnprg 5343 . . . . . . . . 9 ((((Base‘ndx) ∈ ℕ ∧ (.ef‘ndx) ∈ ℕ) ∧ (𝑉𝑊𝐸𝑋) ∧ (Base‘ndx) ≠ (.ef‘ndx)) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2318, 19, 6, 10, 21, 22syl221anc 1261 . . . . . . . 8 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
244fneq1i 5382 . . . . . . . 8 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} ↔ {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2523, 24sylibr 134 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → 𝐺 Fn {(Base‘ndx), (.ef‘ndx)})
26 fnfun 5385 . . . . . . 7 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} → Fun 𝐺)
27 fundif 5332 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ∖ {∅}))
2825, 26, 273syl 17 . . . . . 6 ((𝑉𝑊𝐸𝑋) → Fun (𝐺 ∖ {∅}))
2925fndmd 5389 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → dom 𝐺 = {(Base‘ndx), (.ef‘ndx)})
30 eqimss2 3252 . . . . . . 7 (dom 𝐺 = {(Base‘ndx), (.ef‘ndx)} → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3129, 30syl 14 . . . . . 6 ((𝑉𝑊𝐸𝑋) → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15716 . . . . 5 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = (.ef‘𝐺))
33 edgfid 15690 . . . . . . . 8 .ef = Slot (.ef‘ndx)
3433, 9ndxslid 12942 . . . . . . 7 (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ)
3534slotex 12944 . . . . . 6 (𝐺 ∈ V → (.ef‘𝐺) ∈ V)
3615, 35syl 14 . . . . 5 ((𝑉𝑊𝐸𝑋) → (.ef‘𝐺) ∈ V)
3732, 36eqeltrd 2283 . . . 4 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) ∈ V)
38 rnexg 4957 . . . 4 ((iEdg‘𝐺) ∈ V → ran (iEdg‘𝐺) ∈ V)
3937, 38syl 14 . . 3 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) ∈ V)
401, 3, 15, 39fvmptd3 5691 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran (iEdg‘𝐺))
414struct2griedg 15730 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = 𝐸)
4241rneqd 4921 . 2 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) = ran 𝐸)
4340, 42eqtrd 2239 1 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  Vcvv 2773  cdif 3167  wss 3170  c0 3464  {csn 3638  {cpr 3639  cop 3641  dom cdm 4688  ran crn 4689  Fun wfun 5279   Fn wfn 5280  cfv 5285  cn 9066  ndxcnx 12914  Basecbs 12917  .efcedgf 15688  iEdgciedg 15697  Edgcedg 15739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-2nd 6245  df-1o 6520  df-2o 6521  df-en 6846  df-dom 6847  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-z 9403  df-dec 9535  df-uz 9679  df-fz 10161  df-struct 12919  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-iedg 15699  df-edg 15740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator