| Step | Hyp | Ref
| Expression |
| 1 | | df-edg 15653 |
. . 3
⊢ Edg =
(𝑔 ∈ V ↦ ran
(iEdg‘𝑔)) |
| 2 | | fveq2 5576 |
. . . 4
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 3 | 2 | rneqd 4907 |
. . 3
⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 4 | | edgstruct.s |
. . . 4
⊢ 𝐺 = {〈(Base‘ndx),
𝑉〉,
〈(.ef‘ndx), 𝐸〉} |
| 5 | | basendxnn 12888 |
. . . . . 6
⊢
(Base‘ndx) ∈ ℕ |
| 6 | | simpl 109 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝑉 ∈ 𝑊) |
| 7 | | opexg 4272 |
. . . . . 6
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝑉 ∈ 𝑊) → 〈(Base‘ndx), 𝑉〉 ∈
V) |
| 8 | 5, 6, 7 | sylancr 414 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 〈(Base‘ndx), 𝑉〉 ∈
V) |
| 9 | | edgfndxnn 15607 |
. . . . . 6
⊢
(.ef‘ndx) ∈ ℕ |
| 10 | | simpr 110 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝐸 ∈ 𝑋) |
| 11 | | opexg 4272 |
. . . . . 6
⊢
(((.ef‘ndx) ∈ ℕ ∧ 𝐸 ∈ 𝑋) → 〈(.ef‘ndx), 𝐸〉 ∈
V) |
| 12 | 9, 10, 11 | sylancr 414 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 〈(.ef‘ndx), 𝐸〉 ∈
V) |
| 13 | | prexg 4255 |
. . . . 5
⊢
((〈(Base‘ndx), 𝑉〉 ∈ V ∧ 〈(.ef‘ndx),
𝐸〉 ∈ V) →
{〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ∈
V) |
| 14 | 8, 12, 13 | syl2anc 411 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx),
𝐸〉} ∈
V) |
| 15 | 4, 14 | eqeltrid 2292 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝐺 ∈ V) |
| 16 | 5 | elexi 2784 |
. . . . . 6
⊢
(Base‘ndx) ∈ V |
| 17 | 9 | elexi 2784 |
. . . . . 6
⊢
(.ef‘ndx) ∈ V |
| 18 | 5 | a1i 9 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Base‘ndx) ∈
ℕ) |
| 19 | 9 | a1i 9 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (.ef‘ndx) ∈
ℕ) |
| 20 | | basendxnedgfndx 15610 |
. . . . . . . . . 10
⊢
(Base‘ndx) ≠ (.ef‘ndx) |
| 21 | 20 | a1i 9 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Base‘ndx) ≠
(.ef‘ndx)) |
| 22 | | fnprg 5329 |
. . . . . . . . 9
⊢
((((Base‘ndx) ∈ ℕ ∧ (.ef‘ndx) ∈ ℕ)
∧ (𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) ∧ (Base‘ndx) ≠
(.ef‘ndx)) → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} Fn {(Base‘ndx),
(.ef‘ndx)}) |
| 23 | 18, 19, 6, 10, 21, 22 | syl221anc 1261 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx),
𝐸〉} Fn
{(Base‘ndx), (.ef‘ndx)}) |
| 24 | 4 | fneq1i 5368 |
. . . . . . . 8
⊢ (𝐺 Fn {(Base‘ndx),
(.ef‘ndx)} ↔ {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} Fn {(Base‘ndx),
(.ef‘ndx)}) |
| 25 | 23, 24 | sylibr 134 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝐺 Fn {(Base‘ndx),
(.ef‘ndx)}) |
| 26 | | fnfun 5371 |
. . . . . . 7
⊢ (𝐺 Fn {(Base‘ndx),
(.ef‘ndx)} → Fun 𝐺) |
| 27 | | fundif 5318 |
. . . . . . 7
⊢ (Fun
𝐺 → Fun (𝐺 ∖
{∅})) |
| 28 | 25, 26, 27 | 3syl 17 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → Fun (𝐺 ∖ {∅})) |
| 29 | 25 | fndmd 5375 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom 𝐺 = {(Base‘ndx),
(.ef‘ndx)}) |
| 30 | | eqimss2 3248 |
. . . . . . 7
⊢ (dom
𝐺 = {(Base‘ndx),
(.ef‘ndx)} → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) |
| 31 | 29, 30 | syl 14 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {(Base‘ndx), (.ef‘ndx)}
⊆ dom 𝐺) |
| 32 | 16, 17, 15, 28, 21, 31 | funiedgdm2vald 15629 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 33 | | edgfid 15605 |
. . . . . . . 8
⊢ .ef =
Slot (.ef‘ndx) |
| 34 | 33, 9 | ndxslid 12857 |
. . . . . . 7
⊢ (.ef =
Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 35 | 34 | slotex 12859 |
. . . . . 6
⊢ (𝐺 ∈ V →
(.ef‘𝐺) ∈
V) |
| 36 | 15, 35 | syl 14 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (.ef‘𝐺) ∈ V) |
| 37 | 32, 36 | eqeltrd 2282 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘𝐺) ∈ V) |
| 38 | | rnexg 4943 |
. . . 4
⊢
((iEdg‘𝐺)
∈ V → ran (iEdg‘𝐺) ∈ V) |
| 39 | 37, 38 | syl 14 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ran (iEdg‘𝐺) ∈ V) |
| 40 | 1, 3, 15, 39 | fvmptd3 5673 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 41 | 4 | struct2griedg 15643 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘𝐺) = 𝐸) |
| 42 | 41 | rneqd 4907 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ran (iEdg‘𝐺) = ran 𝐸) |
| 43 | 40, 42 | eqtrd 2238 |
1
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran 𝐸) |