ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct GIF version

Theorem edgstruct 15656
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
Assertion
Ref Expression
edgstruct ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)

Proof of Theorem edgstruct
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-edg 15653 . . 3 Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
2 fveq2 5576 . . . 4 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
32rneqd 4907 . . 3 (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
4 edgstruct.s . . . 4 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
5 basendxnn 12888 . . . . . 6 (Base‘ndx) ∈ ℕ
6 simpl 109 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝑉𝑊)
7 opexg 4272 . . . . . 6 (((Base‘ndx) ∈ ℕ ∧ 𝑉𝑊) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
85, 6, 7sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
9 edgfndxnn 15607 . . . . . 6 (.ef‘ndx) ∈ ℕ
10 simpr 110 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝐸𝑋)
11 opexg 4272 . . . . . 6 (((.ef‘ndx) ∈ ℕ ∧ 𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
129, 10, 11sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
13 prexg 4255 . . . . 5 ((⟨(Base‘ndx), 𝑉⟩ ∈ V ∧ ⟨(.ef‘ndx), 𝐸⟩ ∈ V) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
148, 12, 13syl2anc 411 . . . 4 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
154, 14eqeltrid 2292 . . 3 ((𝑉𝑊𝐸𝑋) → 𝐺 ∈ V)
165elexi 2784 . . . . . 6 (Base‘ndx) ∈ V
179elexi 2784 . . . . . 6 (.ef‘ndx) ∈ V
185a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ∈ ℕ)
199a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (.ef‘ndx) ∈ ℕ)
20 basendxnedgfndx 15610 . . . . . . . . . 10 (Base‘ndx) ≠ (.ef‘ndx)
2120a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ≠ (.ef‘ndx))
22 fnprg 5329 . . . . . . . . 9 ((((Base‘ndx) ∈ ℕ ∧ (.ef‘ndx) ∈ ℕ) ∧ (𝑉𝑊𝐸𝑋) ∧ (Base‘ndx) ≠ (.ef‘ndx)) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2318, 19, 6, 10, 21, 22syl221anc 1261 . . . . . . . 8 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
244fneq1i 5368 . . . . . . . 8 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} ↔ {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2523, 24sylibr 134 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → 𝐺 Fn {(Base‘ndx), (.ef‘ndx)})
26 fnfun 5371 . . . . . . 7 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} → Fun 𝐺)
27 fundif 5318 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ∖ {∅}))
2825, 26, 273syl 17 . . . . . 6 ((𝑉𝑊𝐸𝑋) → Fun (𝐺 ∖ {∅}))
2925fndmd 5375 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → dom 𝐺 = {(Base‘ndx), (.ef‘ndx)})
30 eqimss2 3248 . . . . . . 7 (dom 𝐺 = {(Base‘ndx), (.ef‘ndx)} → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3129, 30syl 14 . . . . . 6 ((𝑉𝑊𝐸𝑋) → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15629 . . . . 5 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = (.ef‘𝐺))
33 edgfid 15605 . . . . . . . 8 .ef = Slot (.ef‘ndx)
3433, 9ndxslid 12857 . . . . . . 7 (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ)
3534slotex 12859 . . . . . 6 (𝐺 ∈ V → (.ef‘𝐺) ∈ V)
3615, 35syl 14 . . . . 5 ((𝑉𝑊𝐸𝑋) → (.ef‘𝐺) ∈ V)
3732, 36eqeltrd 2282 . . . 4 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) ∈ V)
38 rnexg 4943 . . . 4 ((iEdg‘𝐺) ∈ V → ran (iEdg‘𝐺) ∈ V)
3937, 38syl 14 . . 3 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) ∈ V)
401, 3, 15, 39fvmptd3 5673 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran (iEdg‘𝐺))
414struct2griedg 15643 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = 𝐸)
4241rneqd 4907 . 2 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) = ran 𝐸)
4340, 42eqtrd 2238 1 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wne 2376  Vcvv 2772  cdif 3163  wss 3166  c0 3460  {csn 3633  {cpr 3634  cop 3636  dom cdm 4675  ran crn 4676  Fun wfun 5265   Fn wfn 5266  cfv 5271  cn 9036  ndxcnx 12829  Basecbs 12832  .efcedgf 15603  iEdgciedg 15612  Edgcedg 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-2nd 6227  df-1o 6502  df-2o 6503  df-en 6828  df-dom 6829  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-fz 10131  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-edgf 15604  df-iedg 15614  df-edg 15653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator