ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct GIF version

Theorem edgstruct 15858
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
Assertion
Ref Expression
edgstruct ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)

Proof of Theorem edgstruct
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-edg 15853 . . 3 Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
2 fveq2 5626 . . . 4 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
32rneqd 4952 . . 3 (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
4 edgstruct.s . . . 4 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
5 basendxnn 13083 . . . . . 6 (Base‘ndx) ∈ ℕ
6 simpl 109 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝑉𝑊)
7 opexg 4313 . . . . . 6 (((Base‘ndx) ∈ ℕ ∧ 𝑉𝑊) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
85, 6, 7sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(Base‘ndx), 𝑉⟩ ∈ V)
9 edgfndxnn 15803 . . . . . 6 (.ef‘ndx) ∈ ℕ
10 simpr 110 . . . . . 6 ((𝑉𝑊𝐸𝑋) → 𝐸𝑋)
11 opexg 4313 . . . . . 6 (((.ef‘ndx) ∈ ℕ ∧ 𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
129, 10, 11sylancr 414 . . . . 5 ((𝑉𝑊𝐸𝑋) → ⟨(.ef‘ndx), 𝐸⟩ ∈ V)
13 prexg 4294 . . . . 5 ((⟨(Base‘ndx), 𝑉⟩ ∈ V ∧ ⟨(.ef‘ndx), 𝐸⟩ ∈ V) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
148, 12, 13syl2anc 411 . . . 4 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V)
154, 14eqeltrid 2316 . . 3 ((𝑉𝑊𝐸𝑋) → 𝐺 ∈ V)
165elexi 2812 . . . . . 6 (Base‘ndx) ∈ V
179elexi 2812 . . . . . 6 (.ef‘ndx) ∈ V
185a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ∈ ℕ)
199a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (.ef‘ndx) ∈ ℕ)
20 basendxnedgfndx 15806 . . . . . . . . . 10 (Base‘ndx) ≠ (.ef‘ndx)
2120a1i 9 . . . . . . . . 9 ((𝑉𝑊𝐸𝑋) → (Base‘ndx) ≠ (.ef‘ndx))
22 fnprg 5375 . . . . . . . . 9 ((((Base‘ndx) ∈ ℕ ∧ (.ef‘ndx) ∈ ℕ) ∧ (𝑉𝑊𝐸𝑋) ∧ (Base‘ndx) ≠ (.ef‘ndx)) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2318, 19, 6, 10, 21, 22syl221anc 1282 . . . . . . . 8 ((𝑉𝑊𝐸𝑋) → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
244fneq1i 5414 . . . . . . . 8 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} ↔ {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} Fn {(Base‘ndx), (.ef‘ndx)})
2523, 24sylibr 134 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → 𝐺 Fn {(Base‘ndx), (.ef‘ndx)})
26 fnfun 5417 . . . . . . 7 (𝐺 Fn {(Base‘ndx), (.ef‘ndx)} → Fun 𝐺)
27 fundif 5364 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ∖ {∅}))
2825, 26, 273syl 17 . . . . . 6 ((𝑉𝑊𝐸𝑋) → Fun (𝐺 ∖ {∅}))
2925fndmd 5421 . . . . . . 7 ((𝑉𝑊𝐸𝑋) → dom 𝐺 = {(Base‘ndx), (.ef‘ndx)})
30 eqimss2 3279 . . . . . . 7 (dom 𝐺 = {(Base‘ndx), (.ef‘ndx)} → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3129, 30syl 14 . . . . . 6 ((𝑉𝑊𝐸𝑋) → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15827 . . . . 5 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = (.ef‘𝐺))
33 edgfid 15801 . . . . . . . 8 .ef = Slot (.ef‘ndx)
3433, 9ndxslid 13052 . . . . . . 7 (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ)
3534slotex 13054 . . . . . 6 (𝐺 ∈ V → (.ef‘𝐺) ∈ V)
3615, 35syl 14 . . . . 5 ((𝑉𝑊𝐸𝑋) → (.ef‘𝐺) ∈ V)
3732, 36eqeltrd 2306 . . . 4 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) ∈ V)
38 rnexg 4988 . . . 4 ((iEdg‘𝐺) ∈ V → ran (iEdg‘𝐺) ∈ V)
3937, 38syl 14 . . 3 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) ∈ V)
401, 3, 15, 39fvmptd3 5727 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran (iEdg‘𝐺))
414struct2griedg 15841 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘𝐺) = 𝐸)
4241rneqd 4952 . 2 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘𝐺) = ran 𝐸)
4340, 42eqtrd 2262 1 ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  cdif 3194  wss 3197  c0 3491  {csn 3666  {cpr 3667  cop 3669  dom cdm 4718  ran crn 4719  Fun wfun 5311   Fn wfn 5312  cfv 5317  cn 9106  ndxcnx 13024  Basecbs 13027  .efcedgf 15799  iEdgciedg 15808  Edgcedg 15852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-fz 10201  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-iedg 15810  df-edg 15853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator