Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndm | GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5172 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 dom cdm 4585 Fun wfun 5163 Fn wfn 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5172 |
This theorem is referenced by: funfni 5269 fndmu 5270 fnbr 5271 fnco 5277 fnresdm 5278 fnresdisj 5279 fnssresb 5281 fn0 5288 fnimadisj 5289 fnimaeq0 5290 dmmpti 5298 fdm 5324 f1dm 5379 f1odm 5417 f1o00 5448 fvelimab 5523 fvun1 5533 eqfnfv2 5565 fndmdif 5571 fneqeql2 5575 elpreima 5585 fsn2 5640 fconst3m 5685 fconst4m 5686 fnfvima 5698 funiunfvdm 5710 fnunirn 5714 dff13 5715 f1eqcocnv 5738 oprssov 5959 offval 6036 ofrfval 6037 fnexALT 6058 dmmpo 6150 dmmpoga 6153 tposfo2 6211 smodm2 6239 smoel2 6247 tfrlem5 6258 tfrlem8 6262 tfrlem9 6263 tfrlemisucaccv 6269 tfrlemiubacc 6274 tfrexlem 6278 tfri2d 6280 tfr1onlemsucaccv 6285 tfr1onlemubacc 6290 tfrcllemsucaccv 6298 tfri2 6310 rdgivallem 6325 ixpprc 6661 ixpssmap2g 6669 ixpssmapg 6670 bren 6689 fndmeng 6752 caseinl 7029 caseinr 7030 cc2lem 7180 dmaddpi 7239 dmmulpi 7240 hashinfom 10645 shftfn 10717 phimullem 12088 ennnfonelemhom 12127 qnnen 12143 cldrcl 12473 neiss2 12513 txdis1cn 12649 |
Copyright terms: Public domain | W3C validator |