![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndm | GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5033 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 270 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 dom cdm 4454 Fun wfun 5024 Fn wfn 5025 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5033 |
This theorem is referenced by: funfni 5129 fndmu 5130 fnbr 5131 fnco 5137 fnresdm 5138 fnresdisj 5139 fnssresb 5141 fn0 5148 fnimadisj 5149 fnimaeq0 5150 dmmpti 5158 fdm 5181 f1dm 5236 f1odm 5272 f1o00 5303 fvelimab 5375 fvun1 5385 eqfnfv2 5414 fndmdif 5420 fneqeql2 5424 elpreima 5434 fsn2 5487 fconst3m 5532 fconst4m 5533 fnfvima 5545 funiunfvdm 5558 fnunirn 5562 dff13 5563 f1eqcocnv 5586 oprssov 5802 offval 5879 ofrfval 5880 fnexALT 5900 dmmpt2 5991 tposfo2 6048 smodm2 6076 smoel2 6084 tfrlem5 6095 tfrlem8 6099 tfrlem9 6100 tfrlemisucaccv 6106 tfrlemiubacc 6111 tfrexlem 6115 tfri2d 6117 tfr1onlemsucaccv 6122 tfr1onlemubacc 6127 tfrcllemsucaccv 6135 tfri2 6147 rdgivallem 6162 ixpprc 6492 ixpssmap2g 6500 ixpssmapg 6501 bren 6520 fndmeng 6583 caseinl 6838 dmaddpi 6947 dmmulpi 6948 hashinfom 10249 shftfn 10321 phimullem 11542 cldrcl 11865 neiss2 11905 |
Copyright terms: Public domain | W3C validator |