![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndm | GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5258 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4660 Fun wfun 5249 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5258 |
This theorem is referenced by: funfni 5355 fndmu 5356 fnbr 5357 fnco 5363 fnresdm 5364 fnresdisj 5365 fnssresb 5367 fn0 5374 fnimadisj 5375 fnimaeq0 5376 dmmpti 5384 fdm 5410 f1dm 5465 f1odm 5505 f1o00 5536 fvelimab 5614 fvun1 5624 eqfnfv2 5657 fndmdif 5664 fneqeql2 5668 elpreima 5678 fsn2 5733 fconst3m 5778 fconst4m 5779 fnfvima 5794 funiunfvdm 5807 fnunirn 5811 dff13 5812 f1eqcocnv 5835 oprssov 6062 offval 6140 ofrfval 6141 fnexALT 6165 dmmpo 6259 dmmpoga 6263 tposfo2 6322 smodm2 6350 smoel2 6358 tfrlem5 6369 tfrlem8 6373 tfrlem9 6374 tfrlemisucaccv 6380 tfrlemiubacc 6385 tfrexlem 6389 tfri2d 6391 tfr1onlemsucaccv 6396 tfr1onlemubacc 6401 tfrcllemsucaccv 6409 tfri2 6421 rdgivallem 6436 ixpprc 6775 ixpssmap2g 6783 ixpssmapg 6784 bren 6803 fndmeng 6866 caseinl 7152 caseinr 7153 cc2lem 7328 dmaddpi 7387 dmmulpi 7388 hashinfom 10852 shftfn 10971 phimullem 12366 ennnfonelemhom 12575 qnnen 12591 fnpr2ob 12926 cldrcl 14281 neiss2 14321 txdis1cn 14457 |
Copyright terms: Public domain | W3C validator |