| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5273 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 dom cdm 4674 Fun wfun 5264 Fn wfn 5265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5273 |
| This theorem is referenced by: fndmi 5373 fndmd 5374 funfni 5375 fndmu 5376 fnbr 5377 fnco 5383 fnresdm 5384 fnresdisj 5385 fnssresb 5387 fn0 5394 fnimadisj 5395 fnimaeq0 5396 dmmpti 5404 fdm 5430 f1dm 5485 f1odm 5525 f1o00 5556 fvelimab 5634 fvun1 5644 eqfnfv2 5677 fndmdif 5684 fneqeql2 5688 elpreima 5698 fsn2 5753 fconst3m 5802 fconst4m 5803 fnfvima 5818 funiunfvdm 5831 fnunirn 5835 dff13 5836 f1eqcocnv 5859 oprssov 6087 offval 6165 ofrfval 6166 fnexALT 6195 dmmpo 6289 dmmpoga 6293 tposfo2 6352 smodm2 6380 smoel2 6388 tfrlem5 6399 tfrlem8 6403 tfrlem9 6404 tfrlemisucaccv 6410 tfrlemiubacc 6415 tfrexlem 6419 tfri2d 6421 tfr1onlemsucaccv 6426 tfr1onlemubacc 6431 tfrcllemsucaccv 6439 tfri2 6451 rdgivallem 6466 ixpprc 6805 ixpssmap2g 6813 ixpssmapg 6814 bren 6834 fndmeng 6901 caseinl 7192 caseinr 7193 cc2lem 7377 dmaddpi 7437 dmmulpi 7438 hashinfom 10921 shftfn 11077 phimullem 12489 ennnfonelemhom 12728 qnnen 12744 fnpr2ob 13114 cldrcl 14516 neiss2 14556 txdis1cn 14692 |
| Copyright terms: Public domain | W3C validator |