Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndm | GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5191 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5191 |
This theorem is referenced by: funfni 5288 fndmu 5289 fnbr 5290 fnco 5296 fnresdm 5297 fnresdisj 5298 fnssresb 5300 fn0 5307 fnimadisj 5308 fnimaeq0 5309 dmmpti 5317 fdm 5343 f1dm 5398 f1odm 5436 f1o00 5467 fvelimab 5542 fvun1 5552 eqfnfv2 5584 fndmdif 5590 fneqeql2 5594 elpreima 5604 fsn2 5659 fconst3m 5704 fconst4m 5705 fnfvima 5719 funiunfvdm 5731 fnunirn 5735 dff13 5736 f1eqcocnv 5759 oprssov 5983 offval 6057 ofrfval 6058 fnexALT 6079 dmmpo 6173 dmmpoga 6176 tposfo2 6235 smodm2 6263 smoel2 6271 tfrlem5 6282 tfrlem8 6286 tfrlem9 6287 tfrlemisucaccv 6293 tfrlemiubacc 6298 tfrexlem 6302 tfri2d 6304 tfr1onlemsucaccv 6309 tfr1onlemubacc 6314 tfrcllemsucaccv 6322 tfri2 6334 rdgivallem 6349 ixpprc 6685 ixpssmap2g 6693 ixpssmapg 6694 bren 6713 fndmeng 6776 caseinl 7056 caseinr 7057 cc2lem 7207 dmaddpi 7266 dmmulpi 7267 hashinfom 10691 shftfn 10766 phimullem 12157 ennnfonelemhom 12348 qnnen 12364 cldrcl 12742 neiss2 12782 txdis1cn 12918 |
Copyright terms: Public domain | W3C validator |