| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5283 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4683 Fun wfun 5274 Fn wfn 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5283 |
| This theorem is referenced by: fndmi 5383 fndmd 5384 funfni 5385 fndmu 5386 fnbr 5387 fnco 5393 fnresdm 5394 fnresdisj 5395 fnssresb 5397 fn0 5405 fnimadisj 5406 fnimaeq0 5407 dmmpti 5415 fdm 5441 f1dm 5498 f1odm 5538 f1o00 5570 fvelimab 5648 fvun1 5658 eqfnfv2 5691 fndmdif 5698 fneqeql2 5702 elpreima 5712 fsn2 5767 fconst3m 5816 fconst4m 5817 fnfvima 5832 funiunfvdm 5845 fnunirn 5849 dff13 5850 f1eqcocnv 5873 oprssov 6101 offval 6179 ofrfval 6180 fnexALT 6209 dmmpo 6303 dmmpoga 6307 tposfo2 6366 smodm2 6394 smoel2 6402 tfrlem5 6413 tfrlem8 6417 tfrlem9 6418 tfrlemisucaccv 6424 tfrlemiubacc 6429 tfrexlem 6433 tfri2d 6435 tfr1onlemsucaccv 6440 tfr1onlemubacc 6445 tfrcllemsucaccv 6453 tfri2 6465 rdgivallem 6480 ixpprc 6819 ixpssmap2g 6827 ixpssmapg 6828 bren 6848 fndmeng 6916 caseinl 7208 caseinr 7209 cc2lem 7398 dmaddpi 7458 dmmulpi 7459 hashinfom 10945 shftfn 11210 phimullem 12622 ennnfonelemhom 12861 qnnen 12877 fnpr2ob 13247 cldrcl 14649 neiss2 14689 txdis1cn 14825 uhgrm 15749 upgrfnen 15769 upgrex 15774 umgrfnen 15779 |
| Copyright terms: Public domain | W3C validator |