![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndm | GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5257 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4659 Fun wfun 5248 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5257 |
This theorem is referenced by: funfni 5354 fndmu 5355 fnbr 5356 fnco 5362 fnresdm 5363 fnresdisj 5364 fnssresb 5366 fn0 5373 fnimadisj 5374 fnimaeq0 5375 dmmpti 5383 fdm 5409 f1dm 5464 f1odm 5504 f1o00 5535 fvelimab 5613 fvun1 5623 eqfnfv2 5656 fndmdif 5663 fneqeql2 5667 elpreima 5677 fsn2 5732 fconst3m 5777 fconst4m 5778 fnfvima 5793 funiunfvdm 5806 fnunirn 5810 dff13 5811 f1eqcocnv 5834 oprssov 6060 offval 6138 ofrfval 6139 fnexALT 6163 dmmpo 6258 dmmpoga 6261 tposfo2 6320 smodm2 6348 smoel2 6356 tfrlem5 6367 tfrlem8 6371 tfrlem9 6372 tfrlemisucaccv 6378 tfrlemiubacc 6383 tfrexlem 6387 tfri2d 6389 tfr1onlemsucaccv 6394 tfr1onlemubacc 6399 tfrcllemsucaccv 6407 tfri2 6419 rdgivallem 6434 ixpprc 6773 ixpssmap2g 6781 ixpssmapg 6782 bren 6801 fndmeng 6864 caseinl 7150 caseinr 7151 cc2lem 7326 dmaddpi 7385 dmmulpi 7386 hashinfom 10849 shftfn 10968 phimullem 12363 ennnfonelemhom 12572 qnnen 12588 fnpr2ob 12923 cldrcl 14270 neiss2 14310 txdis1cn 14446 |
Copyright terms: Public domain | W3C validator |