| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5262 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 |
| This theorem is referenced by: funfni 5359 fndmu 5360 fnbr 5361 fnco 5367 fnresdm 5368 fnresdisj 5369 fnssresb 5371 fn0 5378 fnimadisj 5379 fnimaeq0 5380 dmmpti 5388 fdm 5414 f1dm 5469 f1odm 5509 f1o00 5540 fvelimab 5618 fvun1 5628 eqfnfv2 5661 fndmdif 5668 fneqeql2 5672 elpreima 5682 fsn2 5737 fconst3m 5782 fconst4m 5783 fnfvima 5798 funiunfvdm 5811 fnunirn 5815 dff13 5816 f1eqcocnv 5839 oprssov 6066 offval 6144 ofrfval 6145 fnexALT 6169 dmmpo 6263 dmmpoga 6267 tposfo2 6326 smodm2 6354 smoel2 6362 tfrlem5 6373 tfrlem8 6377 tfrlem9 6378 tfrlemisucaccv 6384 tfrlemiubacc 6389 tfrexlem 6393 tfri2d 6395 tfr1onlemsucaccv 6400 tfr1onlemubacc 6405 tfrcllemsucaccv 6413 tfri2 6425 rdgivallem 6440 ixpprc 6779 ixpssmap2g 6787 ixpssmapg 6788 bren 6807 fndmeng 6870 caseinl 7158 caseinr 7159 cc2lem 7335 dmaddpi 7394 dmmulpi 7395 hashinfom 10872 shftfn 10991 phimullem 12403 ennnfonelemhom 12642 qnnen 12658 fnpr2ob 12993 cldrcl 14348 neiss2 14388 txdis1cn 14524 |
| Copyright terms: Public domain | W3C validator |