| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5262 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 |
| This theorem is referenced by: fndmi 5359 fndmd 5360 funfni 5361 fndmu 5362 fnbr 5363 fnco 5369 fnresdm 5370 fnresdisj 5371 fnssresb 5373 fn0 5380 fnimadisj 5381 fnimaeq0 5382 dmmpti 5390 fdm 5416 f1dm 5471 f1odm 5511 f1o00 5542 fvelimab 5620 fvun1 5630 eqfnfv2 5663 fndmdif 5670 fneqeql2 5674 elpreima 5684 fsn2 5739 fconst3m 5784 fconst4m 5785 fnfvima 5800 funiunfvdm 5813 fnunirn 5817 dff13 5818 f1eqcocnv 5841 oprssov 6069 offval 6147 ofrfval 6148 fnexALT 6177 dmmpo 6271 dmmpoga 6275 tposfo2 6334 smodm2 6362 smoel2 6370 tfrlem5 6381 tfrlem8 6385 tfrlem9 6386 tfrlemisucaccv 6392 tfrlemiubacc 6397 tfrexlem 6401 tfri2d 6403 tfr1onlemsucaccv 6408 tfr1onlemubacc 6413 tfrcllemsucaccv 6421 tfri2 6433 rdgivallem 6448 ixpprc 6787 ixpssmap2g 6795 ixpssmapg 6796 bren 6815 fndmeng 6878 caseinl 7166 caseinr 7167 cc2lem 7351 dmaddpi 7411 dmmulpi 7412 hashinfom 10889 shftfn 11008 phimullem 12420 ennnfonelemhom 12659 qnnen 12675 fnpr2ob 13044 cldrcl 14446 neiss2 14486 txdis1cn 14622 |
| Copyright terms: Public domain | W3C validator |