| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5320 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4718 Fun wfun 5311 Fn wfn 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5320 |
| This theorem is referenced by: fndmi 5420 fndmd 5421 funfni 5422 fndmu 5423 fnbr 5424 fnco 5430 fnresdm 5431 fnresdisj 5432 fnssresb 5434 fn0 5442 fnimadisj 5443 fnimaeq0 5444 dmmpti 5452 fdm 5478 f1dm 5535 f1odm 5575 f1o00 5607 fvelimab 5689 fvun1 5699 eqfnfv2 5732 fndmdif 5739 fneqeql2 5743 elpreima 5753 fsn2 5808 fconst3m 5857 fconst4m 5858 fnfvima 5873 funiunfvdm 5886 fnunirn 5890 dff13 5891 f1eqcocnv 5914 oprssov 6146 offval 6224 ofrfval 6225 fnexALT 6254 dmmpo 6348 dmmpoga 6352 tposfo2 6411 smodm2 6439 smoel2 6447 tfrlem5 6458 tfrlem8 6462 tfrlem9 6463 tfrlemisucaccv 6469 tfrlemiubacc 6474 tfrexlem 6478 tfri2d 6480 tfr1onlemsucaccv 6485 tfr1onlemubacc 6490 tfrcllemsucaccv 6498 tfri2 6510 rdgivallem 6525 ixpprc 6864 ixpssmap2g 6872 ixpssmapg 6873 bren 6893 fndmeng 6961 caseinl 7254 caseinr 7255 cc2lem 7448 dmaddpi 7508 dmmulpi 7509 hashinfom 10995 shftfn 11330 phimullem 12742 ennnfonelemhom 12981 qnnen 12997 fnpr2ob 13368 cldrcl 14770 neiss2 14810 txdis1cn 14946 uhgrm 15872 upgrfnen 15892 upgrex 15897 umgrfnen 15902 |
| Copyright terms: Public domain | W3C validator |