| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > calemos | GIF version | ||
| Description: "Calemos", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓 (PaM), no 𝜓 is 𝜒 (MeS), and 𝜒 exist, therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| calemos.maj | ⊢ ∀𝑥(𝜑 → 𝜓) | 
| calemos.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | 
| calemos.e | ⊢ ∃𝑥𝜒 | 
| Ref | Expression | 
|---|---|
| calemos | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | calemos.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | calemos.min | . . . . . 6 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
| 3 | 2 | spi 1550 | . . . . 5 ⊢ (𝜓 → ¬ 𝜒) | 
| 4 | 3 | con2i 628 | . . . 4 ⊢ (𝜒 → ¬ 𝜓) | 
| 5 | calemos.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 6 | 5 | spi 1550 | . . . 4 ⊢ (𝜑 → 𝜓) | 
| 7 | 4, 6 | nsyl 629 | . . 3 ⊢ (𝜒 → ¬ 𝜑) | 
| 8 | 7 | ancli 323 | . 2 ⊢ (𝜒 → (𝜒 ∧ ¬ 𝜑)) | 
| 9 | 1, 8 | eximii 1616 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |