Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbxfreq | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1465 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
Ref | Expression |
---|---|
hbxfr.1 | ⊢ 𝐴 = 𝐵 |
hbxfr.2 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
hbxfreq | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2237 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
3 | hbxfr.2 | . 2 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | |
4 | 2, 3 | hbxfrbi 1465 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |