| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbxfreq | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1496 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
| Ref | Expression |
|---|---|
| hbxfr.1 | ⊢ 𝐴 = 𝐵 |
| hbxfr.2 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hbxfreq | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 3 | hbxfr.2 | . 2 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | hbxfrbi 1496 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |