| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hblem | GIF version | ||
| Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| hblem.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| hblem | ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hblem.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | hbsb 1978 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴) |
| 3 | clelsb1 2311 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
| 4 | 3 | albii 1494 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑧 ∈ 𝐴) |
| 5 | 2, 3, 4 | 3imtr3i 200 | 1 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 [wsb 1786 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: nfcrii 2342 |
| Copyright terms: Public domain | W3C validator |