![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hblem | GIF version |
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
hblem.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
hblem | ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hblem.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | hbsb 1949 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴) |
3 | clelsb1 2282 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
4 | 3 | albii 1470 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑧 ∈ 𝐴) |
5 | 2, 3, 4 | 3imtr3i 200 | 1 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 [wsb 1762 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: nfcrii 2312 |
Copyright terms: Public domain | W3C validator |