ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hblem GIF version

Theorem hblem 2274
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
hblem (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21hbsb 1937 . 2 ([𝑧 / 𝑦]𝑦𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦𝐴)
3 clelsb1 2271 . 2 ([𝑧 / 𝑦]𝑦𝐴𝑧𝐴)
43albii 1458 . 2 (∀𝑥[𝑧 / 𝑦]𝑦𝐴 ↔ ∀𝑥 𝑧𝐴)
52, 3, 43imtr3i 199 1 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  [wsb 1750  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161
This theorem is referenced by:  nfcrii  2301
  Copyright terms: Public domain W3C validator