ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb2 GIF version

Theorem clelsb2 2276
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2149). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . 3 𝑥 𝐴𝑤
21sbco2 1958 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑤]𝐴𝑤)
3 nfv 1521 . . . 4 𝑤 𝐴𝑥
4 eleq2 2234 . . . 4 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
53, 4sbie 1784 . . 3 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
65sbbii 1758 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑥]𝐴𝑥)
7 nfv 1521 . . 3 𝑤 𝐴𝑦
8 eleq2 2234 . . 3 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
97, 8sbie 1784 . 2 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
102, 6, 93bitr3i 209 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1755  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166
This theorem is referenced by:  peano1  4578  peano2  4579
  Copyright terms: Public domain W3C validator