![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb2 | GIF version |
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2168). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb2 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 1977 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
4 | eleq2 2253 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
5 | 3, 4 | sbie 1802 | . . 3 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
6 | 5 | sbbii 1776 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝑥) |
7 | nfv 1539 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
8 | eleq2 2253 | . . 3 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
9 | 7, 8 | sbie 1802 | . 2 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
10 | 2, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1773 ∈ wcel 2160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2182 df-clel 2185 |
This theorem is referenced by: peano1 4611 peano2 4612 |
Copyright terms: Public domain | W3C validator |