Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb2 | GIF version |
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2149). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb2 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 1958 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
4 | eleq2 2234 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
5 | 3, 4 | sbie 1784 | . . 3 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
6 | 5 | sbbii 1758 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝑥) |
7 | nfv 1521 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
8 | eleq2 2234 | . . 3 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
9 | 7, 8 | sbie 1784 | . 2 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
10 | 2, 6, 9 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: peano1 4578 peano2 4579 |
Copyright terms: Public domain | W3C validator |