ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb2 GIF version

Theorem clelsb2 2312
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2185). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . 3 𝑥 𝐴𝑤
21sbco2 1994 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑤]𝐴𝑤)
3 nfv 1552 . . . 4 𝑤 𝐴𝑥
4 eleq2 2270 . . . 4 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
53, 4sbie 1815 . . 3 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
65sbbii 1789 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑥]𝐴𝑥)
7 nfv 1552 . . 3 𝑤 𝐴𝑦
8 eleq2 2270 . . 3 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
97, 8sbie 1815 . 2 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
102, 6, 93bitr3i 210 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1786  wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202
This theorem is referenced by:  peano1  4647  peano2  4648
  Copyright terms: Public domain W3C validator