ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb2 GIF version

Theorem clelsb2 2281
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2154). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1526 . . 3 𝑥 𝐴𝑤
21sbco2 1963 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑤]𝐴𝑤)
3 nfv 1526 . . . 4 𝑤 𝐴𝑥
4 eleq2 2239 . . . 4 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
53, 4sbie 1789 . . 3 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
65sbbii 1763 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑥]𝐴𝑥)
7 nfv 1526 . . 3 𝑤 𝐴𝑦
8 eleq2 2239 . . 3 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
97, 8sbie 1789 . 2 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
102, 6, 93bitr3i 210 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1760  wcel 2146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-cleq 2168  df-clel 2171
This theorem is referenced by:  peano1  4587  peano2  4588
  Copyright terms: Public domain W3C validator