| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > clelsb2 | GIF version | ||
| Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2175). (Contributed by Jim Kingdon, 22-Nov-2018.) | 
| Ref | Expression | 
|---|---|
| clelsb2 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑤 | |
| 2 | 1 | sbco2 1984 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝐴 ∈ 𝑤) | 
| 3 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
| 4 | eleq2 2260 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
| 5 | 3, 4 | sbie 1805 | . . 3 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) | 
| 6 | 5 | sbbii 1779 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝑥) | 
| 7 | nfv 1542 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
| 8 | eleq2 2260 | . . 3 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
| 9 | 7, 8 | sbie 1805 | . 2 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) | 
| 10 | 2, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 [wsb 1776 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: peano1 4630 peano2 4631 | 
| Copyright terms: Public domain | W3C validator |