![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1690 r19.32vdc 2643 opbrop 4739 fvopab3g 5631 respreima 5687 fmptco 5725 cocan1 5831 cocan2 5832 brtposg 6309 nnmword 6573 swoer 6617 erth 6635 brecop 6681 ecopovsymg 6690 xpdom2 6887 pw2f1odclem 6892 opabfi 6994 ctssdccl 7172 omniwomnimkv 7228 nninfwlporlemd 7233 pitric 7383 ltexpi 7399 ltapig 7400 ltmpig 7401 ltanqg 7462 ltmnqg 7463 enq0breq 7498 genpassl 7586 genpassu 7587 1idprl 7652 1idpru 7653 caucvgprlemcanl 7706 ltasrg 7832 prsrlt 7849 caucvgsrlemoffcau 7860 ltpsrprg 7865 map2psrprg 7867 axpre-ltadd 7948 subsub23 8226 leadd1 8451 lemul1 8614 reapmul1lem 8615 reapmul1 8616 reapadd1 8617 apsym 8627 apadd1 8629 apti 8643 apcon4bid 8645 lediv1 8890 lt2mul2div 8900 lerec 8905 ltdiv2 8908 lediv2 8912 le2msq 8922 avgle1 9226 avgle2 9227 nn01to3 9685 qapne 9707 cnref1o 9719 xleneg 9906 xsubge0 9950 xleaddadd 9956 iooneg 10057 iccneg 10058 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 fzsplit2 10119 fzaddel 10128 fzrev 10153 elfzo 10218 nelfzo 10221 fzon 10236 elfzom1b 10299 ioo0 10331 ico0 10333 ioc0 10334 flqlt 10355 negqmod0 10405 frec2uzled 10503 expeq0 10644 nn0leexp2 10784 nn0opthlem1d 10794 leisorel 10911 cjreb 11013 ltmininf 11381 minclpr 11383 xrmaxlesup 11405 xrltmininf 11416 xrminltinf 11418 tanaddaplem 11884 nndivdvds 11942 moddvds 11945 modmulconst 11969 oddm1even 12019 ltoddhalfle 12037 dvdssq 12171 phiprmpw 12363 eulerthlemh 12372 odzdvds 12386 pc2dvds 12471 1arith 12508 issubg3 13265 eqgid 13299 resghm2b 13335 conjghm 13349 conjnmzb 13353 ablsubsub23 13398 issrgid 13480 isringid 13524 opprsubgg 13583 opprunitd 13609 crngunit 13610 unitpropdg 13647 issubrng 13698 opprsubrngg 13710 lsslss 13880 lsspropdg 13930 rspsn 14033 znidom 14156 cnrest2 14415 cnptoprest 14418 cnptoprest2 14419 lmss 14425 lmff 14428 txlm 14458 ismet2 14533 blres 14613 xmetec 14616 bdbl 14682 metrest 14685 cnbl0 14713 cnblcld 14714 reopnap 14725 bl2ioo 14729 limcdifap 14841 efle 14952 reapef 14954 logleb 15051 logrpap0b 15052 cxplt 15091 cxple 15092 rpcxple2 15093 rpcxplt2 15094 cxplt3 15095 cxple3 15096 apcxp2 15113 logbleb 15134 logblt 15135 lgsdilem 15184 lgsne0 15195 lgsquadlem1 15234 lgsquadlem2 15235 m1lgs 15242 2lgslem1a 15245 2lgs 15261 iooref1o 15594 |
Copyright terms: Public domain | W3C validator |