| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifpdfbidc 991 dfbi3dc 1439 xordidc 1441 19.32dc 1725 r19.32vdc 2680 opbrop 4798 fvopab3g 5709 respreima 5765 fmptco 5803 cocan1 5917 cocan2 5918 brtposg 6406 nnmword 6672 swoer 6716 erth 6734 brecop 6780 ecopovsymg 6789 xpdom2 6998 pw2f1odclem 7003 opabfi 7108 ctssdccl 7286 omniwomnimkv 7342 nninfwlporlemd 7347 pitric 7516 ltexpi 7532 ltapig 7533 ltmpig 7534 ltanqg 7595 ltmnqg 7596 enq0breq 7631 genpassl 7719 genpassu 7720 1idprl 7785 1idpru 7786 caucvgprlemcanl 7839 ltasrg 7965 prsrlt 7982 caucvgsrlemoffcau 7993 ltpsrprg 7998 map2psrprg 8000 axpre-ltadd 8081 subsub23 8359 leadd1 8585 lemul1 8748 reapmul1lem 8749 reapmul1 8750 reapadd1 8751 apsym 8761 apadd1 8763 apti 8777 apcon4bid 8779 lediv1 9024 lt2mul2div 9034 lerec 9039 ltdiv2 9042 lediv2 9046 le2msq 9056 avgle1 9360 avgle2 9361 nn01to3 9820 qapne 9842 cnref1o 9854 xleneg 10041 xsubge0 10085 xleaddadd 10091 iooneg 10192 iccneg 10193 iccshftr 10198 iccshftl 10200 iccdil 10202 icccntr 10204 fzsplit2 10254 fzaddel 10263 fzrev 10288 elfzo 10353 nelfzo 10356 fzon 10371 elfzom1b 10443 ioo0 10487 ico0 10489 ioc0 10490 flqlt 10511 negqmod0 10561 frec2uzled 10659 expeq0 10800 nn0leexp2 10940 nn0opthlem1d 10950 leisorel 11067 cjreb 11385 ltmininf 11754 minclpr 11756 xrmaxlesup 11778 xrltmininf 11789 xrminltinf 11791 tanaddaplem 12257 nndivdvds 12315 moddvds 12318 modmulconst 12342 oddm1even 12394 ltoddhalfle 12412 bitsp1 12470 dvdssq 12560 phiprmpw 12752 eulerthlemh 12761 odzdvds 12776 pc2dvds 12861 1arith 12898 issubg3 13737 eqgid 13771 resghm2b 13807 conjghm 13821 conjnmzb 13825 ablsubsub23 13870 issrgid 13952 isringid 13996 opprsubgg 14055 opprunitd 14082 crngunit 14083 unitpropdg 14120 issubrng 14171 opprsubrngg 14183 lsslss 14353 lsspropdg 14403 rspsn 14506 znidom 14629 cnrest2 14918 cnptoprest 14921 cnptoprest2 14922 lmss 14928 lmff 14931 txlm 14961 ismet2 15036 blres 15116 xmetec 15119 bdbl 15185 metrest 15188 cnbl0 15216 cnblcld 15217 reopnap 15228 bl2ioo 15232 limcdifap 15344 efle 15458 reapef 15460 logleb 15557 logrpap0b 15558 cxplt 15598 cxple 15599 rpcxple2 15600 rpcxplt2 15601 cxplt3 15602 cxple3 15603 apcxp2 15621 logbleb 15643 logblt 15644 lgsdilem 15714 lgsne0 15725 lgsquadlem1 15764 lgsquadlem2 15765 m1lgs 15772 2lgslem1a 15775 2lgs 15791 ausgrusgrben 15974 uspgr2wlkeq 16086 iooref1o 16432 |
| Copyright terms: Public domain | W3C validator |