| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifpdfbidc 991 dfbi3dc 1439 xordidc 1441 19.32dc 1725 r19.32vdc 2680 opbrop 4795 fvopab3g 5700 respreima 5756 fmptco 5794 cocan1 5904 cocan2 5905 brtposg 6390 nnmword 6654 swoer 6698 erth 6716 brecop 6762 ecopovsymg 6771 xpdom2 6978 pw2f1odclem 6983 opabfi 7088 ctssdccl 7266 omniwomnimkv 7322 nninfwlporlemd 7327 pitric 7496 ltexpi 7512 ltapig 7513 ltmpig 7514 ltanqg 7575 ltmnqg 7576 enq0breq 7611 genpassl 7699 genpassu 7700 1idprl 7765 1idpru 7766 caucvgprlemcanl 7819 ltasrg 7945 prsrlt 7962 caucvgsrlemoffcau 7973 ltpsrprg 7978 map2psrprg 7980 axpre-ltadd 8061 subsub23 8339 leadd1 8565 lemul1 8728 reapmul1lem 8729 reapmul1 8730 reapadd1 8731 apsym 8741 apadd1 8743 apti 8757 apcon4bid 8759 lediv1 9004 lt2mul2div 9014 lerec 9019 ltdiv2 9022 lediv2 9026 le2msq 9036 avgle1 9340 avgle2 9341 nn01to3 9800 qapne 9822 cnref1o 9834 xleneg 10021 xsubge0 10065 xleaddadd 10071 iooneg 10172 iccneg 10173 iccshftr 10178 iccshftl 10180 iccdil 10182 icccntr 10184 fzsplit2 10234 fzaddel 10243 fzrev 10268 elfzo 10333 nelfzo 10336 fzon 10351 elfzom1b 10422 ioo0 10466 ico0 10468 ioc0 10469 flqlt 10490 negqmod0 10540 frec2uzled 10638 expeq0 10779 nn0leexp2 10919 nn0opthlem1d 10929 leisorel 11046 cjreb 11363 ltmininf 11732 minclpr 11734 xrmaxlesup 11756 xrltmininf 11767 xrminltinf 11769 tanaddaplem 12235 nndivdvds 12293 moddvds 12296 modmulconst 12320 oddm1even 12372 ltoddhalfle 12390 bitsp1 12448 dvdssq 12538 phiprmpw 12730 eulerthlemh 12739 odzdvds 12754 pc2dvds 12839 1arith 12876 issubg3 13715 eqgid 13749 resghm2b 13785 conjghm 13799 conjnmzb 13803 ablsubsub23 13848 issrgid 13930 isringid 13974 opprsubgg 14033 opprunitd 14059 crngunit 14060 unitpropdg 14097 issubrng 14148 opprsubrngg 14160 lsslss 14330 lsspropdg 14380 rspsn 14483 znidom 14606 cnrest2 14895 cnptoprest 14898 cnptoprest2 14899 lmss 14905 lmff 14908 txlm 14938 ismet2 15013 blres 15093 xmetec 15096 bdbl 15162 metrest 15165 cnbl0 15193 cnblcld 15194 reopnap 15205 bl2ioo 15209 limcdifap 15321 efle 15435 reapef 15437 logleb 15534 logrpap0b 15535 cxplt 15575 cxple 15576 rpcxple2 15577 rpcxplt2 15578 cxplt3 15579 cxple3 15580 apcxp2 15598 logbleb 15620 logblt 15621 lgsdilem 15691 lgsne0 15702 lgsquadlem1 15741 lgsquadlem2 15742 m1lgs 15749 2lgslem1a 15752 2lgs 15768 ausgrusgrben 15951 iooref1o 16333 |
| Copyright terms: Public domain | W3C validator |