![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1690 r19.32vdc 2643 opbrop 4738 fvopab3g 5630 respreima 5686 fmptco 5724 cocan1 5830 cocan2 5831 brtposg 6307 nnmword 6571 swoer 6615 erth 6633 brecop 6679 ecopovsymg 6688 xpdom2 6885 pw2f1odclem 6890 opabfi 6992 ctssdccl 7170 omniwomnimkv 7226 nninfwlporlemd 7231 pitric 7381 ltexpi 7397 ltapig 7398 ltmpig 7399 ltanqg 7460 ltmnqg 7461 enq0breq 7496 genpassl 7584 genpassu 7585 1idprl 7650 1idpru 7651 caucvgprlemcanl 7704 ltasrg 7830 prsrlt 7847 caucvgsrlemoffcau 7858 ltpsrprg 7863 map2psrprg 7865 axpre-ltadd 7946 subsub23 8224 leadd1 8449 lemul1 8612 reapmul1lem 8613 reapmul1 8614 reapadd1 8615 apsym 8625 apadd1 8627 apti 8641 apcon4bid 8643 lediv1 8888 lt2mul2div 8898 lerec 8903 ltdiv2 8906 lediv2 8910 le2msq 8920 avgle1 9223 avgle2 9224 nn01to3 9682 qapne 9704 cnref1o 9716 xleneg 9903 xsubge0 9947 xleaddadd 9953 iooneg 10054 iccneg 10055 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 fzsplit2 10116 fzaddel 10125 fzrev 10150 elfzo 10215 nelfzo 10218 fzon 10233 elfzom1b 10296 ioo0 10328 ico0 10330 ioc0 10331 flqlt 10352 negqmod0 10402 frec2uzled 10500 expeq0 10641 nn0leexp2 10781 nn0opthlem1d 10791 leisorel 10908 cjreb 11010 ltmininf 11378 minclpr 11380 xrmaxlesup 11402 xrltmininf 11413 xrminltinf 11415 tanaddaplem 11881 nndivdvds 11939 moddvds 11942 modmulconst 11966 oddm1even 12016 ltoddhalfle 12034 dvdssq 12168 phiprmpw 12360 eulerthlemh 12369 odzdvds 12383 pc2dvds 12468 1arith 12505 issubg3 13262 eqgid 13296 resghm2b 13332 conjghm 13346 conjnmzb 13350 ablsubsub23 13395 issrgid 13477 isringid 13521 opprsubgg 13580 opprunitd 13606 crngunit 13607 unitpropdg 13644 issubrng 13695 opprsubrngg 13707 lsslss 13877 lsspropdg 13927 rspsn 14030 znidom 14145 cnrest2 14404 cnptoprest 14407 cnptoprest2 14408 lmss 14414 lmff 14417 txlm 14447 ismet2 14522 blres 14602 xmetec 14605 bdbl 14671 metrest 14674 cnbl0 14702 cnblcld 14703 reopnap 14706 bl2ioo 14710 limcdifap 14816 efle 14911 reapef 14913 logleb 15010 logrpap0b 15011 cxplt 15050 cxple 15051 rpcxple2 15052 rpcxplt2 15053 cxplt3 15054 cxple3 15055 apcxp2 15072 logbleb 15093 logblt 15094 lgsdilem 15143 lgsne0 15154 lgsquadlem1 15191 m1lgs 15192 iooref1o 15524 |
Copyright terms: Public domain | W3C validator |