| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1693 r19.32vdc 2646 opbrop 4743 fvopab3g 5637 respreima 5693 fmptco 5731 cocan1 5837 cocan2 5838 brtposg 6321 nnmword 6585 swoer 6629 erth 6647 brecop 6693 ecopovsymg 6702 xpdom2 6899 pw2f1odclem 6904 opabfi 7008 ctssdccl 7186 omniwomnimkv 7242 nninfwlporlemd 7247 pitric 7405 ltexpi 7421 ltapig 7422 ltmpig 7423 ltanqg 7484 ltmnqg 7485 enq0breq 7520 genpassl 7608 genpassu 7609 1idprl 7674 1idpru 7675 caucvgprlemcanl 7728 ltasrg 7854 prsrlt 7871 caucvgsrlemoffcau 7882 ltpsrprg 7887 map2psrprg 7889 axpre-ltadd 7970 subsub23 8248 leadd1 8474 lemul1 8637 reapmul1lem 8638 reapmul1 8639 reapadd1 8640 apsym 8650 apadd1 8652 apti 8666 apcon4bid 8668 lediv1 8913 lt2mul2div 8923 lerec 8928 ltdiv2 8931 lediv2 8935 le2msq 8945 avgle1 9249 avgle2 9250 nn01to3 9708 qapne 9730 cnref1o 9742 xleneg 9929 xsubge0 9973 xleaddadd 9979 iooneg 10080 iccneg 10081 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 fzsplit2 10142 fzaddel 10151 fzrev 10176 elfzo 10241 nelfzo 10244 fzon 10259 elfzom1b 10322 ioo0 10366 ico0 10368 ioc0 10369 flqlt 10390 negqmod0 10440 frec2uzled 10538 expeq0 10679 nn0leexp2 10819 nn0opthlem1d 10829 leisorel 10946 cjreb 11048 ltmininf 11417 minclpr 11419 xrmaxlesup 11441 xrltmininf 11452 xrminltinf 11454 tanaddaplem 11920 nndivdvds 11978 moddvds 11981 modmulconst 12005 oddm1even 12057 ltoddhalfle 12075 bitsp1 12133 dvdssq 12223 phiprmpw 12415 eulerthlemh 12424 odzdvds 12439 pc2dvds 12524 1arith 12561 issubg3 13398 eqgid 13432 resghm2b 13468 conjghm 13482 conjnmzb 13486 ablsubsub23 13531 issrgid 13613 isringid 13657 opprsubgg 13716 opprunitd 13742 crngunit 13743 unitpropdg 13780 issubrng 13831 opprsubrngg 13843 lsslss 14013 lsspropdg 14063 rspsn 14166 znidom 14289 cnrest2 14556 cnptoprest 14559 cnptoprest2 14560 lmss 14566 lmff 14569 txlm 14599 ismet2 14674 blres 14754 xmetec 14757 bdbl 14823 metrest 14826 cnbl0 14854 cnblcld 14855 reopnap 14866 bl2ioo 14870 limcdifap 14982 efle 15096 reapef 15098 logleb 15195 logrpap0b 15196 cxplt 15236 cxple 15237 rpcxple2 15238 rpcxplt2 15239 cxplt3 15240 cxple3 15241 apcxp2 15259 logbleb 15281 logblt 15282 lgsdilem 15352 lgsne0 15363 lgsquadlem1 15402 lgsquadlem2 15403 m1lgs 15410 2lgslem1a 15413 2lgs 15429 iooref1o 15765 |
| Copyright terms: Public domain | W3C validator |