| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1693 r19.32vdc 2646 opbrop 4743 fvopab3g 5635 respreima 5691 fmptco 5729 cocan1 5835 cocan2 5836 brtposg 6313 nnmword 6577 swoer 6621 erth 6639 brecop 6685 ecopovsymg 6694 xpdom2 6891 pw2f1odclem 6896 opabfi 7000 ctssdccl 7178 omniwomnimkv 7234 nninfwlporlemd 7239 pitric 7390 ltexpi 7406 ltapig 7407 ltmpig 7408 ltanqg 7469 ltmnqg 7470 enq0breq 7505 genpassl 7593 genpassu 7594 1idprl 7659 1idpru 7660 caucvgprlemcanl 7713 ltasrg 7839 prsrlt 7856 caucvgsrlemoffcau 7867 ltpsrprg 7872 map2psrprg 7874 axpre-ltadd 7955 subsub23 8233 leadd1 8459 lemul1 8622 reapmul1lem 8623 reapmul1 8624 reapadd1 8625 apsym 8635 apadd1 8637 apti 8651 apcon4bid 8653 lediv1 8898 lt2mul2div 8908 lerec 8913 ltdiv2 8916 lediv2 8920 le2msq 8930 avgle1 9234 avgle2 9235 nn01to3 9693 qapne 9715 cnref1o 9727 xleneg 9914 xsubge0 9958 xleaddadd 9964 iooneg 10065 iccneg 10066 iccshftr 10071 iccshftl 10073 iccdil 10075 icccntr 10077 fzsplit2 10127 fzaddel 10136 fzrev 10161 elfzo 10226 nelfzo 10229 fzon 10244 elfzom1b 10307 ioo0 10351 ico0 10353 ioc0 10354 flqlt 10375 negqmod0 10425 frec2uzled 10523 expeq0 10664 nn0leexp2 10804 nn0opthlem1d 10814 leisorel 10931 cjreb 11033 ltmininf 11402 minclpr 11404 xrmaxlesup 11426 xrltmininf 11437 xrminltinf 11439 tanaddaplem 11905 nndivdvds 11963 moddvds 11966 modmulconst 11990 oddm1even 12042 ltoddhalfle 12060 bitsp1 12118 dvdssq 12208 phiprmpw 12400 eulerthlemh 12409 odzdvds 12424 pc2dvds 12509 1arith 12546 issubg3 13332 eqgid 13366 resghm2b 13402 conjghm 13416 conjnmzb 13420 ablsubsub23 13465 issrgid 13547 isringid 13591 opprsubgg 13650 opprunitd 13676 crngunit 13677 unitpropdg 13714 issubrng 13765 opprsubrngg 13777 lsslss 13947 lsspropdg 13997 rspsn 14100 znidom 14223 cnrest2 14482 cnptoprest 14485 cnptoprest2 14486 lmss 14492 lmff 14495 txlm 14525 ismet2 14600 blres 14680 xmetec 14683 bdbl 14749 metrest 14752 cnbl0 14780 cnblcld 14781 reopnap 14792 bl2ioo 14796 limcdifap 14908 efle 15022 reapef 15024 logleb 15121 logrpap0b 15122 cxplt 15162 cxple 15163 rpcxple2 15164 rpcxplt2 15165 cxplt3 15166 cxple3 15167 apcxp2 15185 logbleb 15207 logblt 15208 lgsdilem 15278 lgsne0 15289 lgsquadlem1 15328 lgsquadlem2 15329 m1lgs 15336 2lgslem1a 15339 2lgs 15355 iooref1o 15688 |
| Copyright terms: Public domain | W3C validator |