Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | bitr4d 190 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
5 | 1, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dfbi3dc 1392 xordidc 1394 19.32dc 1672 r19.32vdc 2619 opbrop 4688 fvopab3g 5567 respreima 5621 fmptco 5659 cocan1 5763 cocan2 5764 brtposg 6230 nnmword 6494 swoer 6537 erth 6553 brecop 6599 ecopovsymg 6608 xpdom2 6805 ctssdccl 7084 omniwomnimkv 7139 pitric 7270 ltexpi 7286 ltapig 7287 ltmpig 7288 ltanqg 7349 ltmnqg 7350 enq0breq 7385 genpassl 7473 genpassu 7474 1idprl 7539 1idpru 7540 caucvgprlemcanl 7593 ltasrg 7719 prsrlt 7736 caucvgsrlemoffcau 7747 ltpsrprg 7752 map2psrprg 7754 axpre-ltadd 7835 subsub23 8111 leadd1 8336 lemul1 8499 reapmul1lem 8500 reapmul1 8501 reapadd1 8502 apsym 8512 apadd1 8514 apti 8528 apcon4bid 8530 lediv1 8772 lt2mul2div 8782 lerec 8787 ltdiv2 8790 lediv2 8794 le2msq 8804 avgle1 9105 avgle2 9106 nn01to3 9563 qapne 9585 cnref1o 9596 xleneg 9781 xsubge0 9825 xleaddadd 9831 iooneg 9932 iccneg 9933 iccshftr 9938 iccshftl 9940 iccdil 9942 icccntr 9944 fzsplit2 9993 fzaddel 10002 fzrev 10027 elfzo 10092 fzon 10109 elfzom1b 10172 ioo0 10203 ico0 10205 ioc0 10206 flqlt 10226 negqmod0 10274 frec2uzled 10372 expeq0 10494 nn0leexp2 10632 nn0opthlem1d 10641 leisorel 10759 cjreb 10817 ltmininf 11185 minclpr 11187 xrmaxlesup 11209 xrltmininf 11220 xrminltinf 11222 tanaddaplem 11688 nndivdvds 11745 moddvds 11748 modmulconst 11772 oddm1even 11821 ltoddhalfle 11839 dvdssq 11973 phiprmpw 12163 eulerthlemh 12172 odzdvds 12186 pc2dvds 12270 1arith 12306 cnrest2 12989 cnptoprest 12992 cnptoprest2 12993 lmss 12999 lmff 13002 txlm 13032 ismet2 13107 blres 13187 xmetec 13190 bdbl 13256 metrest 13259 cnbl0 13287 cnblcld 13288 reopnap 13291 bl2ioo 13295 limcdifap 13384 efle 13450 reapef 13452 logleb 13549 logrpap0b 13550 cxplt 13589 cxple 13590 rpcxple2 13591 rpcxplt2 13592 cxplt3 13593 cxple3 13594 apcxp2 13611 logbleb 13632 logblt 13633 lgsdilem 13681 lgsne0 13692 iooref1o 14026 |
Copyright terms: Public domain | W3C validator |