![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dfbi3dc 1397 xordidc 1399 19.32dc 1679 r19.32vdc 2626 opbrop 4706 fvopab3g 5590 respreima 5645 fmptco 5683 cocan1 5788 cocan2 5789 brtposg 6255 nnmword 6519 swoer 6563 erth 6579 brecop 6625 ecopovsymg 6634 xpdom2 6831 ctssdccl 7110 omniwomnimkv 7165 nninfwlporlemd 7170 pitric 7320 ltexpi 7336 ltapig 7337 ltmpig 7338 ltanqg 7399 ltmnqg 7400 enq0breq 7435 genpassl 7523 genpassu 7524 1idprl 7589 1idpru 7590 caucvgprlemcanl 7643 ltasrg 7769 prsrlt 7786 caucvgsrlemoffcau 7797 ltpsrprg 7802 map2psrprg 7804 axpre-ltadd 7885 subsub23 8162 leadd1 8387 lemul1 8550 reapmul1lem 8551 reapmul1 8552 reapadd1 8553 apsym 8563 apadd1 8565 apti 8579 apcon4bid 8581 lediv1 8826 lt2mul2div 8836 lerec 8841 ltdiv2 8844 lediv2 8848 le2msq 8858 avgle1 9159 avgle2 9160 nn01to3 9617 qapne 9639 cnref1o 9650 xleneg 9837 xsubge0 9881 xleaddadd 9887 iooneg 9988 iccneg 9989 iccshftr 9994 iccshftl 9996 iccdil 9998 icccntr 10000 fzsplit2 10050 fzaddel 10059 fzrev 10084 elfzo 10149 fzon 10166 elfzom1b 10229 ioo0 10260 ico0 10262 ioc0 10263 flqlt 10283 negqmod0 10331 frec2uzled 10429 expeq0 10551 nn0leexp2 10690 nn0opthlem1d 10700 leisorel 10817 cjreb 10875 ltmininf 11243 minclpr 11245 xrmaxlesup 11267 xrltmininf 11278 xrminltinf 11280 tanaddaplem 11746 nndivdvds 11803 moddvds 11806 modmulconst 11830 oddm1even 11880 ltoddhalfle 11898 dvdssq 12032 phiprmpw 12222 eulerthlemh 12231 odzdvds 12245 pc2dvds 12329 1arith 12365 issubg3 13052 eqgid 13085 ablsubsub23 13128 issrgid 13164 isringid 13208 opprunitd 13279 crngunit 13280 unitpropdg 13317 cnrest2 13739 cnptoprest 13742 cnptoprest2 13743 lmss 13749 lmff 13752 txlm 13782 ismet2 13857 blres 13937 xmetec 13940 bdbl 14006 metrest 14009 cnbl0 14037 cnblcld 14038 reopnap 14041 bl2ioo 14045 limcdifap 14134 efle 14200 reapef 14202 logleb 14299 logrpap0b 14300 cxplt 14339 cxple 14340 rpcxple2 14341 rpcxplt2 14342 cxplt3 14343 cxple3 14344 apcxp2 14361 logbleb 14382 logblt 14383 lgsdilem 14431 lgsne0 14442 m1lgs 14455 iooref1o 14785 |
Copyright terms: Public domain | W3C validator |