Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | bitr4d 190 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
5 | 1, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dfbi3dc 1387 xordidc 1389 19.32dc 1667 r19.32vdc 2615 opbrop 4683 fvopab3g 5559 respreima 5613 fmptco 5651 cocan1 5755 cocan2 5756 brtposg 6222 nnmword 6486 swoer 6529 erth 6545 brecop 6591 ecopovsymg 6600 xpdom2 6797 ctssdccl 7076 omniwomnimkv 7131 pitric 7262 ltexpi 7278 ltapig 7279 ltmpig 7280 ltanqg 7341 ltmnqg 7342 enq0breq 7377 genpassl 7465 genpassu 7466 1idprl 7531 1idpru 7532 caucvgprlemcanl 7585 ltasrg 7711 prsrlt 7728 caucvgsrlemoffcau 7739 ltpsrprg 7744 map2psrprg 7746 axpre-ltadd 7827 subsub23 8103 leadd1 8328 lemul1 8491 reapmul1lem 8492 reapmul1 8493 reapadd1 8494 apsym 8504 apadd1 8506 apti 8520 apcon4bid 8522 lediv1 8764 lt2mul2div 8774 lerec 8779 ltdiv2 8782 lediv2 8786 le2msq 8796 avgle1 9097 avgle2 9098 nn01to3 9555 qapne 9577 cnref1o 9588 xleneg 9773 xsubge0 9817 xleaddadd 9823 iooneg 9924 iccneg 9925 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 fzsplit2 9985 fzaddel 9994 fzrev 10019 elfzo 10084 fzon 10101 elfzom1b 10164 ioo0 10195 ico0 10197 ioc0 10198 flqlt 10218 negqmod0 10266 frec2uzled 10364 expeq0 10486 nn0leexp2 10624 nn0opthlem1d 10633 leisorel 10750 cjreb 10808 ltmininf 11176 minclpr 11178 xrmaxlesup 11200 xrltmininf 11211 xrminltinf 11213 tanaddaplem 11679 nndivdvds 11736 moddvds 11739 modmulconst 11763 oddm1even 11812 ltoddhalfle 11830 dvdssq 11964 phiprmpw 12154 eulerthlemh 12163 odzdvds 12177 pc2dvds 12261 1arith 12297 cnrest2 12876 cnptoprest 12879 cnptoprest2 12880 lmss 12886 lmff 12889 txlm 12919 ismet2 12994 blres 13074 xmetec 13077 bdbl 13143 metrest 13146 cnbl0 13174 cnblcld 13175 reopnap 13178 bl2ioo 13182 limcdifap 13271 efle 13337 reapef 13339 logleb 13436 logrpap0b 13437 cxplt 13476 cxple 13477 rpcxple2 13478 rpcxplt2 13479 cxplt3 13480 cxple3 13481 apcxp2 13498 logbleb 13519 logblt 13520 lgsdilem 13568 lgsne0 13579 iooref1o 13913 |
Copyright terms: Public domain | W3C validator |