| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1417 xordidc 1419 19.32dc 1703 r19.32vdc 2656 opbrop 4759 fvopab3g 5662 respreima 5718 fmptco 5756 cocan1 5866 cocan2 5867 brtposg 6350 nnmword 6614 swoer 6658 erth 6676 brecop 6722 ecopovsymg 6731 xpdom2 6938 pw2f1odclem 6943 opabfi 7047 ctssdccl 7225 omniwomnimkv 7281 nninfwlporlemd 7286 pitric 7447 ltexpi 7463 ltapig 7464 ltmpig 7465 ltanqg 7526 ltmnqg 7527 enq0breq 7562 genpassl 7650 genpassu 7651 1idprl 7716 1idpru 7717 caucvgprlemcanl 7770 ltasrg 7896 prsrlt 7913 caucvgsrlemoffcau 7924 ltpsrprg 7929 map2psrprg 7931 axpre-ltadd 8012 subsub23 8290 leadd1 8516 lemul1 8679 reapmul1lem 8680 reapmul1 8681 reapadd1 8682 apsym 8692 apadd1 8694 apti 8708 apcon4bid 8710 lediv1 8955 lt2mul2div 8965 lerec 8970 ltdiv2 8973 lediv2 8977 le2msq 8987 avgle1 9291 avgle2 9292 nn01to3 9751 qapne 9773 cnref1o 9785 xleneg 9972 xsubge0 10016 xleaddadd 10022 iooneg 10123 iccneg 10124 iccshftr 10129 iccshftl 10131 iccdil 10133 icccntr 10135 fzsplit2 10185 fzaddel 10194 fzrev 10219 elfzo 10284 nelfzo 10287 fzon 10302 elfzom1b 10371 ioo0 10415 ico0 10417 ioc0 10418 flqlt 10439 negqmod0 10489 frec2uzled 10587 expeq0 10728 nn0leexp2 10868 nn0opthlem1d 10878 leisorel 10995 cjreb 11227 ltmininf 11596 minclpr 11598 xrmaxlesup 11620 xrltmininf 11631 xrminltinf 11633 tanaddaplem 12099 nndivdvds 12157 moddvds 12160 modmulconst 12184 oddm1even 12236 ltoddhalfle 12254 bitsp1 12312 dvdssq 12402 phiprmpw 12594 eulerthlemh 12603 odzdvds 12618 pc2dvds 12703 1arith 12740 issubg3 13578 eqgid 13612 resghm2b 13648 conjghm 13662 conjnmzb 13666 ablsubsub23 13711 issrgid 13793 isringid 13837 opprsubgg 13896 opprunitd 13922 crngunit 13923 unitpropdg 13960 issubrng 14011 opprsubrngg 14023 lsslss 14193 lsspropdg 14243 rspsn 14346 znidom 14469 cnrest2 14758 cnptoprest 14761 cnptoprest2 14762 lmss 14768 lmff 14771 txlm 14801 ismet2 14876 blres 14956 xmetec 14959 bdbl 15025 metrest 15028 cnbl0 15056 cnblcld 15057 reopnap 15068 bl2ioo 15072 limcdifap 15184 efle 15298 reapef 15300 logleb 15397 logrpap0b 15398 cxplt 15438 cxple 15439 rpcxple2 15440 rpcxplt2 15441 cxplt3 15442 cxple3 15443 apcxp2 15461 logbleb 15483 logblt 15484 lgsdilem 15554 lgsne0 15565 lgsquadlem1 15604 lgsquadlem2 15605 m1lgs 15612 2lgslem1a 15615 2lgs 15631 iooref1o 16088 |
| Copyright terms: Public domain | W3C validator |