| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1693 r19.32vdc 2646 opbrop 4743 fvopab3g 5637 respreima 5693 fmptco 5731 cocan1 5837 cocan2 5838 brtposg 6321 nnmword 6585 swoer 6629 erth 6647 brecop 6693 ecopovsymg 6702 xpdom2 6899 pw2f1odclem 6904 opabfi 7008 ctssdccl 7186 omniwomnimkv 7242 nninfwlporlemd 7247 pitric 7407 ltexpi 7423 ltapig 7424 ltmpig 7425 ltanqg 7486 ltmnqg 7487 enq0breq 7522 genpassl 7610 genpassu 7611 1idprl 7676 1idpru 7677 caucvgprlemcanl 7730 ltasrg 7856 prsrlt 7873 caucvgsrlemoffcau 7884 ltpsrprg 7889 map2psrprg 7891 axpre-ltadd 7972 subsub23 8250 leadd1 8476 lemul1 8639 reapmul1lem 8640 reapmul1 8641 reapadd1 8642 apsym 8652 apadd1 8654 apti 8668 apcon4bid 8670 lediv1 8915 lt2mul2div 8925 lerec 8930 ltdiv2 8933 lediv2 8937 le2msq 8947 avgle1 9251 avgle2 9252 nn01to3 9710 qapne 9732 cnref1o 9744 xleneg 9931 xsubge0 9975 xleaddadd 9981 iooneg 10082 iccneg 10083 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 fzsplit2 10144 fzaddel 10153 fzrev 10178 elfzo 10243 nelfzo 10246 fzon 10261 elfzom1b 10324 ioo0 10368 ico0 10370 ioc0 10371 flqlt 10392 negqmod0 10442 frec2uzled 10540 expeq0 10681 nn0leexp2 10821 nn0opthlem1d 10831 leisorel 10948 cjreb 11050 ltmininf 11419 minclpr 11421 xrmaxlesup 11443 xrltmininf 11454 xrminltinf 11456 tanaddaplem 11922 nndivdvds 11980 moddvds 11983 modmulconst 12007 oddm1even 12059 ltoddhalfle 12077 bitsp1 12135 dvdssq 12225 phiprmpw 12417 eulerthlemh 12426 odzdvds 12441 pc2dvds 12526 1arith 12563 issubg3 13400 eqgid 13434 resghm2b 13470 conjghm 13484 conjnmzb 13488 ablsubsub23 13533 issrgid 13615 isringid 13659 opprsubgg 13718 opprunitd 13744 crngunit 13745 unitpropdg 13782 issubrng 13833 opprsubrngg 13845 lsslss 14015 lsspropdg 14065 rspsn 14168 znidom 14291 cnrest2 14580 cnptoprest 14583 cnptoprest2 14584 lmss 14590 lmff 14593 txlm 14623 ismet2 14698 blres 14778 xmetec 14781 bdbl 14847 metrest 14850 cnbl0 14878 cnblcld 14879 reopnap 14890 bl2ioo 14894 limcdifap 15006 efle 15120 reapef 15122 logleb 15219 logrpap0b 15220 cxplt 15260 cxple 15261 rpcxple2 15262 rpcxplt2 15263 cxplt3 15264 cxple3 15265 apcxp2 15283 logbleb 15305 logblt 15306 lgsdilem 15376 lgsne0 15387 lgsquadlem1 15426 lgsquadlem2 15427 m1lgs 15434 2lgslem1a 15437 2lgs 15453 iooref1o 15791 |
| Copyright terms: Public domain | W3C validator |