| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | 
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| 3bitr4d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) | 
| 5 | 1, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: dfbi3dc 1408 xordidc 1410 19.32dc 1693 r19.32vdc 2646 opbrop 4742 fvopab3g 5634 respreima 5690 fmptco 5728 cocan1 5834 cocan2 5835 brtposg 6312 nnmword 6576 swoer 6620 erth 6638 brecop 6684 ecopovsymg 6693 xpdom2 6890 pw2f1odclem 6895 opabfi 6999 ctssdccl 7177 omniwomnimkv 7233 nninfwlporlemd 7238 pitric 7388 ltexpi 7404 ltapig 7405 ltmpig 7406 ltanqg 7467 ltmnqg 7468 enq0breq 7503 genpassl 7591 genpassu 7592 1idprl 7657 1idpru 7658 caucvgprlemcanl 7711 ltasrg 7837 prsrlt 7854 caucvgsrlemoffcau 7865 ltpsrprg 7870 map2psrprg 7872 axpre-ltadd 7953 subsub23 8231 leadd1 8457 lemul1 8620 reapmul1lem 8621 reapmul1 8622 reapadd1 8623 apsym 8633 apadd1 8635 apti 8649 apcon4bid 8651 lediv1 8896 lt2mul2div 8906 lerec 8911 ltdiv2 8914 lediv2 8918 le2msq 8928 avgle1 9232 avgle2 9233 nn01to3 9691 qapne 9713 cnref1o 9725 xleneg 9912 xsubge0 9956 xleaddadd 9962 iooneg 10063 iccneg 10064 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 fzsplit2 10125 fzaddel 10134 fzrev 10159 elfzo 10224 nelfzo 10227 fzon 10242 elfzom1b 10305 ioo0 10349 ico0 10351 ioc0 10352 flqlt 10373 negqmod0 10423 frec2uzled 10521 expeq0 10662 nn0leexp2 10802 nn0opthlem1d 10812 leisorel 10929 cjreb 11031 ltmininf 11400 minclpr 11402 xrmaxlesup 11424 xrltmininf 11435 xrminltinf 11437 tanaddaplem 11903 nndivdvds 11961 moddvds 11964 modmulconst 11988 oddm1even 12040 ltoddhalfle 12058 bitsp1 12115 dvdssq 12198 phiprmpw 12390 eulerthlemh 12399 odzdvds 12414 pc2dvds 12499 1arith 12536 issubg3 13322 eqgid 13356 resghm2b 13392 conjghm 13406 conjnmzb 13410 ablsubsub23 13455 issrgid 13537 isringid 13581 opprsubgg 13640 opprunitd 13666 crngunit 13667 unitpropdg 13704 issubrng 13755 opprsubrngg 13767 lsslss 13937 lsspropdg 13987 rspsn 14090 znidom 14213 cnrest2 14472 cnptoprest 14475 cnptoprest2 14476 lmss 14482 lmff 14485 txlm 14515 ismet2 14590 blres 14670 xmetec 14673 bdbl 14739 metrest 14742 cnbl0 14770 cnblcld 14771 reopnap 14782 bl2ioo 14786 limcdifap 14898 efle 15012 reapef 15014 logleb 15111 logrpap0b 15112 cxplt 15152 cxple 15153 rpcxple2 15154 rpcxplt2 15155 cxplt3 15156 cxple3 15157 apcxp2 15175 logbleb 15197 logblt 15198 lgsdilem 15268 lgsne0 15279 lgsquadlem1 15318 lgsquadlem2 15319 m1lgs 15326 2lgslem1a 15329 2lgs 15345 iooref1o 15678 | 
| Copyright terms: Public domain | W3C validator |