Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32d | GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | biimp 117 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜒 → 𝜃)) | |
3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
4 | 3 | imdistand 444 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
5 | biimpr 129 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 → 𝜒)) | |
6 | 1, 5 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
7 | 6 | imdistand 444 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜓 ∧ 𝜒))) |
8 | 4, 7 | impbid 128 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32rd 447 pm5.32da 448 pm5.32 449 anbi2d 460 cbvex2 1910 cores 5106 isoini 5785 mpoeq123 5897 genpassl 7461 genpassu 7462 fzind 9302 btwnz 9306 elfzm11 10022 isprm2 12045 isprm3 12046 modprminv 12177 modprminveq 12178 |
Copyright terms: Public domain | W3C validator |