| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | 
| Ref | Expression | 
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.32d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | biimp 118 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 4 | 3 | imdistand 447 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | 
| 5 | biimpr 130 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 → 𝜒)) | |
| 6 | 1, 5 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) | 
| 7 | 6 | imdistand 447 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜓 ∧ 𝜒))) | 
| 8 | 4, 7 | impbid 129 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1937 cores 5173 isoini 5865 mpoeq123 5981 genpassl 7591 genpassu 7592 fzind 9441 btwnz 9445 elfzm11 10166 isprm2 12285 isprm3 12286 modprminv 12418 modprminveq 12419 | 
| Copyright terms: Public domain | W3C validator |