| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | biimp 118 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 4 | 3 | imdistand 447 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| 5 | biimpr 130 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 → 𝜒)) | |
| 6 | 1, 5 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 7 | 6 | imdistand 447 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜓 ∧ 𝜒))) |
| 8 | 4, 7 | impbid 129 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1969 cores 5228 isoini 5935 mpoeq123 6054 genpassl 7699 genpassu 7700 fzind 9550 btwnz 9554 elfzm11 10275 isprm2 12625 isprm3 12626 modprminv 12758 modprminveq 12759 |
| Copyright terms: Public domain | W3C validator |