ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm GIF version

Theorem fconstfvm 5592
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5591. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦)

Proof of Theorem fconstfvm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5230 . . 3 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
2 fvconst 5562 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
32ralrimiva 2479 . . 3 (𝐹:𝐴⟶{𝐵} → ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
41, 3jca 302 . 2 (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
5 fvelrnb 5423 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝐴 (𝐹𝑧) = 𝑤))
6 fveq2 5375 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
76eqeq1d 2123 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝑧) = 𝐵))
87rspccva 2759 . . . . . . . . . . . 12 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → (𝐹𝑧) = 𝐵)
98eqeq1d 2123 . . . . . . . . . . 11 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → ((𝐹𝑧) = 𝑤𝐵 = 𝑤))
109rexbidva 2408 . . . . . . . . . 10 (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → (∃𝑧𝐴 (𝐹𝑧) = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
11 r19.9rmv 3420 . . . . . . . . . . 11 (∃𝑦 𝑦𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
1211bicomd 140 . . . . . . . . . 10 (∃𝑦 𝑦𝐴 → (∃𝑧𝐴 𝐵 = 𝑤𝐵 = 𝑤))
1310, 12sylan9bbr 456 . . . . . . . . 9 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (∃𝑧𝐴 (𝐹𝑧) = 𝑤𝐵 = 𝑤))
145, 13sylan9bbr 456 . . . . . . . 8 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝐵 = 𝑤))
15 velsn 3510 . . . . . . . . 9 (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵)
16 eqcom 2117 . . . . . . . . 9 (𝑤 = 𝐵𝐵 = 𝑤)
1715, 16bitr2i 184 . . . . . . . 8 (𝐵 = 𝑤𝑤 ∈ {𝐵})
1814, 17syl6bb 195 . . . . . . 7 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝑤 ∈ {𝐵}))
1918eqrdv 2113 . . . . . 6 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵})
2019an32s 540 . . . . 5 (((∃𝑦 𝑦𝐴𝐹 Fn 𝐴) ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → ran 𝐹 = {𝐵})
2120exp31 359 . . . 4 (∃𝑦 𝑦𝐴 → (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → ran 𝐹 = {𝐵})))
2221imdistand 441 . . 3 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})))
23 df-fo 5087 . . . 4 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
24 fof 5303 . . . 4 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
2523, 24sylbir 134 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
2622, 25syl6 33 . 2 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵}))
274, 26impbid2 142 1 (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wex 1451  wcel 1463  wral 2390  wrex 2391  {csn 3493  ran crn 4500   Fn wfn 5076  wf 5077  ontowfo 5079  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fo 5087  df-fv 5089
This theorem is referenced by:  fconst3m  5593
  Copyright terms: Public domain W3C validator