Step | Hyp | Ref
| Expression |
1 | | ffn 5337 |
. . 3
⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) |
2 | | fvconst 5673 |
. . . 4
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
3 | 2 | ralrimiva 2539 |
. . 3
⊢ (𝐹:𝐴⟶{𝐵} → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
4 | 1, 3 | jca 304 |
. 2
⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
5 | | fvelrnb 5534 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤)) |
6 | | fveq2 5486 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
7 | 6 | eqeq1d 2174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝑧) = 𝐵)) |
8 | 7 | rspccva 2829 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
9 | 8 | eqeq1d 2174 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) = 𝑤 ↔ 𝐵 = 𝑤)) |
10 | 9 | rexbidva 2463 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤 ↔ ∃𝑧 ∈ 𝐴 𝐵 = 𝑤)) |
11 | | r19.9rmv 3500 |
. . . . . . . . . . 11
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧 ∈ 𝐴 𝐵 = 𝑤)) |
12 | 11 | bicomd 140 |
. . . . . . . . . 10
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (∃𝑧 ∈ 𝐴 𝐵 = 𝑤 ↔ 𝐵 = 𝑤)) |
13 | 10, 12 | sylan9bbr 459 |
. . . . . . . . 9
⊢
((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → (∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤 ↔ 𝐵 = 𝑤)) |
14 | 5, 13 | sylan9bbr 459 |
. . . . . . . 8
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹 ↔ 𝐵 = 𝑤)) |
15 | | velsn 3593 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵) |
16 | | eqcom 2167 |
. . . . . . . . 9
⊢ (𝑤 = 𝐵 ↔ 𝐵 = 𝑤) |
17 | 15, 16 | bitr2i 184 |
. . . . . . . 8
⊢ (𝐵 = 𝑤 ↔ 𝑤 ∈ {𝐵}) |
18 | 14, 17 | bitrdi 195 |
. . . . . . 7
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ {𝐵})) |
19 | 18 | eqrdv 2163 |
. . . . . 6
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵}) |
20 | 19 | an32s 558 |
. . . . 5
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ 𝐹 Fn 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → ran 𝐹 = {𝐵}) |
21 | 20 | exp31 362 |
. . . 4
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 → ran 𝐹 = {𝐵}))) |
22 | 21 | imdistand 444 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))) |
23 | | df-fo 5194 |
. . . 4
⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})) |
24 | | fof 5410 |
. . . 4
⊢ (𝐹:𝐴–onto→{𝐵} → 𝐹:𝐴⟶{𝐵}) |
25 | 23, 24 | sylbir 134 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵}) |
26 | 22, 25 | syl6 33 |
. 2
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵})) |
27 | 4, 26 | impbid2 142 |
1
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵))) |