ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm GIF version

Theorem fconstfvm 5714
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5713. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦)

Proof of Theorem fconstfvm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5347 . . 3 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
2 fvconst 5684 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
32ralrimiva 2543 . . 3 (𝐹:𝐴⟶{𝐵} → ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
41, 3jca 304 . 2 (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
5 fvelrnb 5544 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝐴 (𝐹𝑧) = 𝑤))
6 fveq2 5496 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
76eqeq1d 2179 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝑧) = 𝐵))
87rspccva 2833 . . . . . . . . . . . 12 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → (𝐹𝑧) = 𝐵)
98eqeq1d 2179 . . . . . . . . . . 11 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → ((𝐹𝑧) = 𝑤𝐵 = 𝑤))
109rexbidva 2467 . . . . . . . . . 10 (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → (∃𝑧𝐴 (𝐹𝑧) = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
11 r19.9rmv 3506 . . . . . . . . . . 11 (∃𝑦 𝑦𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
1211bicomd 140 . . . . . . . . . 10 (∃𝑦 𝑦𝐴 → (∃𝑧𝐴 𝐵 = 𝑤𝐵 = 𝑤))
1310, 12sylan9bbr 460 . . . . . . . . 9 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (∃𝑧𝐴 (𝐹𝑧) = 𝑤𝐵 = 𝑤))
145, 13sylan9bbr 460 . . . . . . . 8 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝐵 = 𝑤))
15 velsn 3600 . . . . . . . . 9 (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵)
16 eqcom 2172 . . . . . . . . 9 (𝑤 = 𝐵𝐵 = 𝑤)
1715, 16bitr2i 184 . . . . . . . 8 (𝐵 = 𝑤𝑤 ∈ {𝐵})
1814, 17bitrdi 195 . . . . . . 7 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝑤 ∈ {𝐵}))
1918eqrdv 2168 . . . . . 6 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵})
2019an32s 563 . . . . 5 (((∃𝑦 𝑦𝐴𝐹 Fn 𝐴) ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → ran 𝐹 = {𝐵})
2120exp31 362 . . . 4 (∃𝑦 𝑦𝐴 → (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → ran 𝐹 = {𝐵})))
2221imdistand 445 . . 3 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})))
23 df-fo 5204 . . . 4 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
24 fof 5420 . . . 4 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
2523, 24sylbir 134 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
2622, 25syl6 33 . 2 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵}))
274, 26impbid2 142 1 (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  {csn 3583  ran crn 4612   Fn wfn 5193  wf 5194  ontowfo 5196  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206
This theorem is referenced by:  fconst3m  5715
  Copyright terms: Public domain W3C validator