| Step | Hyp | Ref
 | Expression | 
| 1 |   | ffn 5407 | 
. . 3
⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | 
| 2 |   | fvconst 5750 | 
. . . 4
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | 
| 3 | 2 | ralrimiva 2570 | 
. . 3
⊢ (𝐹:𝐴⟶{𝐵} → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) | 
| 4 | 1, 3 | jca 306 | 
. 2
⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | 
| 5 |   | fvelrnb 5608 | 
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤)) | 
| 6 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | 
| 7 | 6 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝑧) = 𝐵)) | 
| 8 | 7 | rspccva 2867 | 
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | 
| 9 | 8 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) = 𝑤 ↔ 𝐵 = 𝑤)) | 
| 10 | 9 | rexbidva 2494 | 
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝐵 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤 ↔ ∃𝑧 ∈ 𝐴 𝐵 = 𝑤)) | 
| 11 |   | r19.9rmv 3542 | 
. . . . . . . . . . 11
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧 ∈ 𝐴 𝐵 = 𝑤)) | 
| 12 | 11 | bicomd 141 | 
. . . . . . . . . 10
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (∃𝑧 ∈ 𝐴 𝐵 = 𝑤 ↔ 𝐵 = 𝑤)) | 
| 13 | 10, 12 | sylan9bbr 463 | 
. . . . . . . . 9
⊢
((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → (∃𝑧 ∈ 𝐴 (𝐹‘𝑧) = 𝑤 ↔ 𝐵 = 𝑤)) | 
| 14 | 5, 13 | sylan9bbr 463 | 
. . . . . . . 8
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹 ↔ 𝐵 = 𝑤)) | 
| 15 |   | velsn 3639 | 
. . . . . . . . 9
⊢ (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵) | 
| 16 |   | eqcom 2198 | 
. . . . . . . . 9
⊢ (𝑤 = 𝐵 ↔ 𝐵 = 𝑤) | 
| 17 | 15, 16 | bitr2i 185 | 
. . . . . . . 8
⊢ (𝐵 = 𝑤 ↔ 𝑤 ∈ {𝐵}) | 
| 18 | 14, 17 | bitrdi 196 | 
. . . . . . 7
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ {𝐵})) | 
| 19 | 18 | eqrdv 2194 | 
. . . . . 6
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵}) | 
| 20 | 19 | an32s 568 | 
. . . . 5
⊢
(((∃𝑦 𝑦 ∈ 𝐴 ∧ 𝐹 Fn 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → ran 𝐹 = {𝐵}) | 
| 21 | 20 | exp31 364 | 
. . . 4
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 → ran 𝐹 = {𝐵}))) | 
| 22 | 21 | imdistand 447 | 
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))) | 
| 23 |   | df-fo 5264 | 
. . . 4
⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})) | 
| 24 |   | fof 5480 | 
. . . 4
⊢ (𝐹:𝐴–onto→{𝐵} → 𝐹:𝐴⟶{𝐵}) | 
| 25 | 23, 24 | sylbir 135 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵}) | 
| 26 | 22, 25 | syl6 33 | 
. 2
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵})) | 
| 27 | 4, 26 | impbid2 143 | 
1
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵))) |