ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm GIF version

Theorem fconstfvm 5730
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5729. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦)

Proof of Theorem fconstfvm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5361 . . 3 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
2 fvconst 5700 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
32ralrimiva 2550 . . 3 (𝐹:𝐴⟶{𝐵} → ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
41, 3jca 306 . 2 (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
5 fvelrnb 5559 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝐴 (𝐹𝑧) = 𝑤))
6 fveq2 5511 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
76eqeq1d 2186 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝑧) = 𝐵))
87rspccva 2840 . . . . . . . . . . . 12 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → (𝐹𝑧) = 𝐵)
98eqeq1d 2186 . . . . . . . . . . 11 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → ((𝐹𝑧) = 𝑤𝐵 = 𝑤))
109rexbidva 2474 . . . . . . . . . 10 (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → (∃𝑧𝐴 (𝐹𝑧) = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
11 r19.9rmv 3514 . . . . . . . . . . 11 (∃𝑦 𝑦𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
1211bicomd 141 . . . . . . . . . 10 (∃𝑦 𝑦𝐴 → (∃𝑧𝐴 𝐵 = 𝑤𝐵 = 𝑤))
1310, 12sylan9bbr 463 . . . . . . . . 9 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (∃𝑧𝐴 (𝐹𝑧) = 𝑤𝐵 = 𝑤))
145, 13sylan9bbr 463 . . . . . . . 8 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝐵 = 𝑤))
15 velsn 3608 . . . . . . . . 9 (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵)
16 eqcom 2179 . . . . . . . . 9 (𝑤 = 𝐵𝐵 = 𝑤)
1715, 16bitr2i 185 . . . . . . . 8 (𝐵 = 𝑤𝑤 ∈ {𝐵})
1814, 17bitrdi 196 . . . . . . 7 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝑤 ∈ {𝐵}))
1918eqrdv 2175 . . . . . 6 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵})
2019an32s 568 . . . . 5 (((∃𝑦 𝑦𝐴𝐹 Fn 𝐴) ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → ran 𝐹 = {𝐵})
2120exp31 364 . . . 4 (∃𝑦 𝑦𝐴 → (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → ran 𝐹 = {𝐵})))
2221imdistand 447 . . 3 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})))
23 df-fo 5218 . . . 4 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
24 fof 5434 . . . 4 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
2523, 24sylbir 135 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
2622, 25syl6 33 . 2 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵}))
274, 26impbid2 143 1 (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  {csn 3591  ran crn 4624   Fn wfn 5207  wf 5208  ontowfo 5210  cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fo 5218  df-fv 5220
This theorem is referenced by:  fconst3m  5731
  Copyright terms: Public domain W3C validator