ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm GIF version

Theorem fconstfvm 5780
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5779. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦)

Proof of Theorem fconstfvm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5407 . . 3 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
2 fvconst 5750 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
32ralrimiva 2570 . . 3 (𝐹:𝐴⟶{𝐵} → ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
41, 3jca 306 . 2 (𝐹:𝐴⟶{𝐵} → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
5 fvelrnb 5608 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝐴 (𝐹𝑧) = 𝑤))
6 fveq2 5558 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
76eqeq1d 2205 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝑧) = 𝐵))
87rspccva 2867 . . . . . . . . . . . 12 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → (𝐹𝑧) = 𝐵)
98eqeq1d 2205 . . . . . . . . . . 11 ((∀𝑥𝐴 (𝐹𝑥) = 𝐵𝑧𝐴) → ((𝐹𝑧) = 𝑤𝐵 = 𝑤))
109rexbidva 2494 . . . . . . . . . 10 (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → (∃𝑧𝐴 (𝐹𝑧) = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
11 r19.9rmv 3542 . . . . . . . . . . 11 (∃𝑦 𝑦𝐴 → (𝐵 = 𝑤 ↔ ∃𝑧𝐴 𝐵 = 𝑤))
1211bicomd 141 . . . . . . . . . 10 (∃𝑦 𝑦𝐴 → (∃𝑧𝐴 𝐵 = 𝑤𝐵 = 𝑤))
1310, 12sylan9bbr 463 . . . . . . . . 9 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (∃𝑧𝐴 (𝐹𝑧) = 𝑤𝐵 = 𝑤))
145, 13sylan9bbr 463 . . . . . . . 8 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝐵 = 𝑤))
15 velsn 3639 . . . . . . . . 9 (𝑤 ∈ {𝐵} ↔ 𝑤 = 𝐵)
16 eqcom 2198 . . . . . . . . 9 (𝑤 = 𝐵𝐵 = 𝑤)
1715, 16bitr2i 185 . . . . . . . 8 (𝐵 = 𝑤𝑤 ∈ {𝐵})
1814, 17bitrdi 196 . . . . . . 7 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑤 ∈ ran 𝐹𝑤 ∈ {𝐵}))
1918eqrdv 2194 . . . . . 6 (((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ran 𝐹 = {𝐵})
2019an32s 568 . . . . 5 (((∃𝑦 𝑦𝐴𝐹 Fn 𝐴) ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → ran 𝐹 = {𝐵})
2120exp31 364 . . . 4 (∃𝑦 𝑦𝐴 → (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 → ran 𝐹 = {𝐵})))
2221imdistand 447 . . 3 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})))
23 df-fo 5264 . . . 4 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
24 fof 5480 . . . 4 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
2523, 24sylbir 135 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
2622, 25syl6 33 . 2 (∃𝑦 𝑦𝐴 → ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) → 𝐹:𝐴⟶{𝐵}))
274, 26impbid2 143 1 (∃𝑦 𝑦𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {csn 3622  ran crn 4664   Fn wfn 5253  wf 5254  ontowfo 5256  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  fconst3m  5781
  Copyright terms: Public domain W3C validator