Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgft1 GIF version

Theorem elabgft1 14615
Description: One implication of elabgf 2881, in closed form. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1 𝑥𝐴
elabgf1.nf2 𝑥𝜓
Assertion
Ref Expression
elabgft1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))

Proof of Theorem elabgft1
StepHypRef Expression
1 biimp 118 . . . . . 6 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜑))
2 imim2 55 . . . . . 6 ((𝜑𝜓) → ((𝐴 ∈ {𝑥𝜑} → 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
31, 2syl5 32 . . . . 5 ((𝜑𝜓) → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
43imim2i 12 . . . 4 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))))
54alimi 1455 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))))
6 elabgf1.nf1 . . . 4 𝑥𝐴
7 nfab1 2321 . . . . . 6 𝑥{𝑥𝜑}
86, 7nfel 2328 . . . . 5 𝑥 𝐴 ∈ {𝑥𝜑}
9 elabgf1.nf2 . . . . 5 𝑥𝜓
108, 9nfim 1572 . . . 4 𝑥(𝐴 ∈ {𝑥𝜑} → 𝜓)
11 elabgf0 14614 . . . 4 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
126, 10, 11bj-vtoclgft 14612 . . 3 (∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))) → (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
135, 12syl 14 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
1413pm2.43d 50 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wnf 1460  wcel 2148  {cab 2163  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  elabgf1  14616
  Copyright terms: Public domain W3C validator