| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > elabgft1 | GIF version | ||
| Description: One implication of elabgf 2945, in closed form. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| elabgf1.nf1 | ⊢ Ⅎ𝑥𝐴 |
| elabgf1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| elabgft1 | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 118 | . . . . . 6 ⊢ ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜑)) | |
| 2 | imim2 55 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → ((𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓))) | |
| 3 | 1, 2 | syl5 32 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓))) |
| 4 | 3 | imim2i 12 | . . . 4 ⊢ ((𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)))) |
| 5 | 4 | alimi 1501 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)))) |
| 6 | elabgf1.nf1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 7 | nfab1 2374 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 8 | 6, 7 | nfel 2381 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
| 9 | elabgf1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 10 | 8, 9 | nfim 1618 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
| 11 | elabgf0 16099 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | |
| 12 | 6, 10, 11 | bj-vtoclgft 16097 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓))) |
| 13 | 5, 12 | syl 14 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓))) |
| 14 | 13 | pm2.43d 50 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elabgf1 16101 |
| Copyright terms: Public domain | W3C validator |