Proof of Theorem bj-rspgt
| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 2 | 1 | imbi1d 231 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)))) |
| 3 | 2 | biimpd 144 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)))) |
| 4 | | imim2 55 |
. . . . . . . 8
⊢ ((𝜑 → 𝜓) → ((∀𝑥 ∈ 𝐵 𝜑 → 𝜑) → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) |
| 5 | 4 | imim2d 54 |
. . . . . . 7
⊢ ((𝜑 → 𝜓) → ((𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)))) |
| 6 | 3, 5 | syl9 72 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))))) |
| 7 | 6 | a2i 11 |
. . . . 5
⊢ ((𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))))) |
| 8 | 7 | alimi 1469 |
. . . 4
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))))) |
| 9 | | bj-rspg.nfa |
. . . . 5
⊢
Ⅎ𝑥𝐴 |
| 10 | | bj-rspg.nfb |
. . . . . . 7
⊢
Ⅎ𝑥𝐵 |
| 11 | 9, 10 | nfel 2348 |
. . . . . 6
⊢
Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 12 | | nfra1 2528 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐵 𝜑 |
| 13 | | bj-rspg.nf2 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
| 14 | 12, 13 | nfim 1586 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥 ∈ 𝐵 𝜑 → 𝜓) |
| 15 | 11, 14 | nfim 1586 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 16 | | rsp 2544 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 𝜑 → (𝑥 ∈ 𝐵 → 𝜑)) |
| 17 | 16 | a1i 9 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∀𝑥 ∈ 𝐵 𝜑 → (𝑥 ∈ 𝐵 → 𝜑))) |
| 18 | 17 | com23 78 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑))) |
| 19 | 9, 15, 18 | bj-vtoclgft 15421 |
. . . 4
⊢
(∀𝑥(𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜑)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)))) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)))) |
| 20 | 8, 19 | syl 14 |
. . 3
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)))) |
| 21 | 20 | pm2.43d 50 |
. 2
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) |
| 22 | 21 | com23 78 |
1
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |