ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbim GIF version

Theorem spsbim 1831
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
Assertion
Ref Expression
spsbim (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem spsbim
StepHypRef Expression
1 imim2 55 . . . 4 ((𝜑𝜓) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
21sps 1525 . . 3 (∀𝑥(𝜑𝜓) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
3 id 19 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
43anim2d 335 . . . . 5 ((𝜑𝜓) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
54alimi 1443 . . . 4 (∀𝑥(𝜑𝜓) → ∀𝑥((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
6 exim 1587 . . . 4 (∀𝑥((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)) → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜓)))
75, 6syl 14 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜓)))
82, 7anim12d 333 . 2 (∀𝑥(𝜑𝜓) → (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) → ((𝑥 = 𝑦𝜓) ∧ ∃𝑥(𝑥 = 𝑦𝜓))))
9 df-sb 1751 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
10 df-sb 1751 . 2 ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦𝜓) ∧ ∃𝑥(𝑥 = 𝑦𝜓)))
118, 9, 103imtr4g 204 1 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  spsbbi  1832  hbsb4t  2001  moim  2078
  Copyright terms: Public domain W3C validator