![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spsbim | GIF version |
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
Ref | Expression |
---|---|
spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2 55 | . . . 4 ⊢ ((𝜑 → 𝜓) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
2 | 1 | sps 1537 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) |
3 | id 19 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
4 | 3 | anim2d 337 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓))) |
5 | 4 | alimi 1455 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓))) |
6 | exim 1599 | . . . 4 ⊢ (∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓)) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
8 | 2, 7 | anim12d 335 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)))) |
9 | df-sb 1763 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
10 | df-sb 1763 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
11 | 8, 9, 10 | 3imtr4g 205 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1492 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: spsbbi 1844 hbsb4t 2013 moim 2090 |
Copyright terms: Public domain | W3C validator |