Proof of Theorem spsbim
Step | Hyp | Ref
| Expression |
1 | | imim2 55 |
. . . 4
⊢ ((𝜑 → 𝜓) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) |
2 | 1 | sps 1525 |
. . 3
⊢
(∀𝑥(𝜑 → 𝜓) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) |
3 | | id 19 |
. . . . . 6
⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) |
4 | 3 | anim2d 335 |
. . . . 5
⊢ ((𝜑 → 𝜓) → ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓))) |
5 | 4 | alimi 1443 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝜓) → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓))) |
6 | | exim 1587 |
. . . 4
⊢
(∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ 𝜓)) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
7 | 5, 6 | syl 14 |
. . 3
⊢
(∀𝑥(𝜑 → 𝜓) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
8 | 2, 7 | anim12d 333 |
. 2
⊢
(∀𝑥(𝜑 → 𝜓) → (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)))) |
9 | | df-sb 1751 |
. 2
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
10 | | df-sb 1751 |
. 2
⊢ ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦 → 𝜓) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
11 | 8, 9, 10 | 3imtr4g 204 |
1
⊢
(∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |