Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim2d | GIF version |
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 326 pm5.31 346 con4biddc 852 jaddc 859 hbimd 1566 19.21ht 1574 nfimd 1578 19.23t 1670 spimth 1728 ssuni 3816 nnmordi 6492 omnimkv 7128 caucvgsrlemoffcau 7747 caucvgsrlemoffres 7749 facdiv 10659 facwordi 10661 bezoutlemmain 11940 bezoutlemaz 11945 bezoutlembz 11946 algcvgblem 11990 prmfac1 12093 infpnlem1 12298 cncfco 13331 limccnpcntop 13397 limccoap 13400 bj-rspgt 13780 |
Copyright terms: Public domain | W3C validator |