Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim2d | GIF version |
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 326 pm5.31 346 con4biddc 852 jaddc 859 hbimd 1566 19.21ht 1574 nfimd 1578 19.23t 1670 spimth 1728 ssuni 3818 nnmordi 6495 omnimkv 7132 caucvgsrlemoffcau 7760 caucvgsrlemoffres 7762 facdiv 10672 facwordi 10674 bezoutlemmain 11953 bezoutlemaz 11958 bezoutlembz 11959 algcvgblem 12003 prmfac1 12106 infpnlem1 12311 cncfco 13372 limccnpcntop 13438 limccoap 13441 bj-rspgt 13821 |
Copyright terms: Public domain | W3C validator |