![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim2d | GIF version |
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 858 jaddc 865 hbimd 1584 19.21ht 1592 nfimd 1596 19.23t 1688 spimth 1746 ssuni 3857 nnmordi 6569 omnimkv 7215 caucvgsrlemoffcau 7858 caucvgsrlemoffres 7860 facdiv 10809 facwordi 10811 bezoutlemmain 12135 bezoutlemaz 12140 bezoutlembz 12141 algcvgblem 12187 prmfac1 12290 infpnlem1 12497 cncfco 14746 limccnpcntop 14829 limccoap 14832 bj-rspgt 15278 |
Copyright terms: Public domain | W3C validator |