Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim2d | GIF version |
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 326 pm5.31 346 con4biddc 847 jaddc 854 hbimd 1561 19.21ht 1569 nfimd 1573 19.23t 1665 spimth 1723 ssuni 3811 nnmordi 6484 omnimkv 7120 caucvgsrlemoffcau 7739 caucvgsrlemoffres 7741 facdiv 10651 facwordi 10653 bezoutlemmain 11931 bezoutlemaz 11936 bezoutlembz 11937 algcvgblem 11981 prmfac1 12084 infpnlem1 12289 cncfco 13228 limccnpcntop 13294 limccoap 13297 bj-rspgt 13677 |
Copyright terms: Public domain | W3C validator |