![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim2d | GIF version |
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 857 jaddc 864 hbimd 1573 19.21ht 1581 nfimd 1585 19.23t 1677 spimth 1735 ssuni 3832 nnmordi 6517 omnimkv 7154 caucvgsrlemoffcau 7797 caucvgsrlemoffres 7799 facdiv 10718 facwordi 10720 bezoutlemmain 11999 bezoutlemaz 12004 bezoutlembz 12005 algcvgblem 12049 prmfac1 12152 infpnlem1 12357 cncfco 14081 limccnpcntop 14147 limccoap 14150 bj-rspgt 14541 |
Copyright terms: Public domain | W3C validator |