| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim2d | GIF version | ||
| Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
| 3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 862 jaddc 869 hbimd 1619 19.21ht 1627 nfimd 1631 19.23t 1723 spimth 1781 ssuni 3910 nnmordi 6670 omnimkv 7331 caucvgsrlemoffcau 7993 caucvgsrlemoffres 7995 facdiv 10968 facwordi 10970 bezoutlemmain 12527 bezoutlemaz 12532 bezoutlembz 12533 algcvgblem 12579 prmfac1 12682 infpnlem1 12890 mplsubgfileminv 14672 cncfco 15273 limccnpcntop 15357 limccoap 15360 bj-rspgt 16174 |
| Copyright terms: Public domain | W3C validator |