| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim2d | GIF version | ||
| Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
| 3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 858 jaddc 865 hbimd 1587 19.21ht 1595 nfimd 1599 19.23t 1691 spimth 1749 ssuni 3862 nnmordi 6583 omnimkv 7231 caucvgsrlemoffcau 7884 caucvgsrlemoffres 7886 facdiv 10849 facwordi 10851 bezoutlemmain 12192 bezoutlemaz 12197 bezoutlembz 12198 algcvgblem 12244 prmfac1 12347 infpnlem1 12555 mplsubgfileminv 14334 cncfco 14935 limccnpcntop 15019 limccoap 15022 bj-rspgt 15540 |
| Copyright terms: Public domain | W3C validator |