ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim2d GIF version

Theorem imim2d 54
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imim2d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem imim2d
StepHypRef Expression
1 imim2d.1 . . 3 (𝜑 → (𝜓𝜒))
21a1d 22 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
32a2d 26 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim2  55  embantd  56  imim12d  74  anc2r  328  pm5.31  348  con4biddc  862  jaddc  869  hbimd  1619  19.21ht  1627  nfimd  1631  19.23t  1723  spimth  1781  ssuni  3910  nnmordi  6670  omnimkv  7331  caucvgsrlemoffcau  7993  caucvgsrlemoffres  7995  facdiv  10968  facwordi  10970  bezoutlemmain  12527  bezoutlemaz  12532  bezoutlembz  12533  algcvgblem  12579  prmfac1  12682  infpnlem1  12890  mplsubgfileminv  14672  cncfco  15273  limccnpcntop  15357  limccoap  15360  bj-rspgt  16174
  Copyright terms: Public domain W3C validator