| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim2d | GIF version | ||
| Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
| 3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 861 jaddc 868 hbimd 1599 19.21ht 1607 nfimd 1611 19.23t 1703 spimth 1761 ssuni 3889 nnmordi 6632 omnimkv 7291 caucvgsrlemoffcau 7953 caucvgsrlemoffres 7955 facdiv 10927 facwordi 10929 bezoutlemmain 12485 bezoutlemaz 12490 bezoutlembz 12491 algcvgblem 12537 prmfac1 12640 infpnlem1 12848 mplsubgfileminv 14629 cncfco 15230 limccnpcntop 15314 limccoap 15317 bj-rspgt 16060 |
| Copyright terms: Public domain | W3C validator |