| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imim2d | GIF version | ||
| Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| imim2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| imim2d | ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imim2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) | 
| 3 | 2 | a2d 26 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: imim2 55 embantd 56 imim12d 74 anc2r 328 pm5.31 348 con4biddc 858 jaddc 865 hbimd 1587 19.21ht 1595 nfimd 1599 19.23t 1691 spimth 1749 ssuni 3861 nnmordi 6574 omnimkv 7222 caucvgsrlemoffcau 7865 caucvgsrlemoffres 7867 facdiv 10830 facwordi 10832 bezoutlemmain 12165 bezoutlemaz 12170 bezoutlembz 12171 algcvgblem 12217 prmfac1 12320 infpnlem1 12528 cncfco 14827 limccnpcntop 14911 limccoap 14914 bj-rspgt 15432 | 
| Copyright terms: Public domain | W3C validator |