ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimth GIF version

Theorem spimth 1723
Description: Closed theorem form of spim 1726. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.)
Assertion
Ref Expression
spimth (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))

Proof of Theorem spimth
StepHypRef Expression
1 imim2 55 . . . . . 6 ((𝜓 → ∀𝑥𝜓) → ((𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
21imim2d 54 . . . . 5 ((𝜓 → ∀𝑥𝜓) → ((𝑥 = 𝑦 → (𝜑𝜓)) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜓))))
32imp 123 . . . 4 (((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜓)))
43com23 78 . . 3 (((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (𝜑 → (𝑥 = 𝑦 → ∀𝑥𝜓)))
54al2imi 1446 . 2 (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)))
6 ax9o 1686 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓) → 𝜓)
75, 6syl6 33 1 (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equveli  1747
  Copyright terms: Public domain W3C validator