| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > canth | GIF version | ||
| Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1546 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.) |
| Ref | Expression |
|---|---|
| canth.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth | ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | ssrab2 3309 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ⊆ 𝐴 | |
| 3 | 1, 2 | elpwi2 4241 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ 𝒫 𝐴 |
| 4 | forn 5550 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴) | |
| 5 | 3, 4 | eleqtrrid 2319 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
| 6 | pm5.19 711 | . . . . . 6 ⊢ ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦)) | |
| 7 | eleq2 2293 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} → (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
| 8 | id 19 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 9 | fveq2 5626 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 10 | 8, 9 | eleq12d 2300 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑦))) |
| 11 | 10 | notbid 671 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹‘𝑥) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 12 | 11 | elrab3 2960 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 13 | 7, 12 | sylan9bbr 463 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) → (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 14 | 6, 13 | mto 666 | . . . . 5 ⊢ ¬ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
| 15 | 14 | imnani 695 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
| 16 | 15 | nrex 2622 | . . 3 ⊢ ¬ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} |
| 17 | fofn 5549 | . . . 4 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → 𝐹 Fn 𝐴) | |
| 18 | fvelrnb 5680 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
| 19 | 17, 18 | syl 14 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
| 20 | 16, 19 | mtbiri 679 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
| 21 | 5, 20 | pm2.65i 642 | 1 ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 Vcvv 2799 𝒫 cpw 3649 ran crn 4719 Fn wfn 5312 –onto→wfo 5315 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |