| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > canth | GIF version | ||
| Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1522 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.) |
| Ref | Expression |
|---|---|
| canth.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth | ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | ssrab2 3277 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ⊆ 𝐴 | |
| 3 | 1, 2 | elpwi2 4201 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ 𝒫 𝐴 |
| 4 | forn 5500 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴) | |
| 5 | 3, 4 | eleqtrrid 2294 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
| 6 | pm5.19 707 | . . . . . 6 ⊢ ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦)) | |
| 7 | eleq2 2268 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} → (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
| 8 | id 19 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 9 | fveq2 5575 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 10 | 8, 9 | eleq12d 2275 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑦))) |
| 11 | 10 | notbid 668 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹‘𝑥) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 12 | 11 | elrab3 2929 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 13 | 7, 12 | sylan9bbr 463 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) → (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
| 14 | 6, 13 | mto 663 | . . . . 5 ⊢ ¬ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
| 15 | 14 | imnani 692 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
| 16 | 15 | nrex 2597 | . . 3 ⊢ ¬ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} |
| 17 | fofn 5499 | . . . 4 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → 𝐹 Fn 𝐴) | |
| 18 | fvelrnb 5625 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
| 19 | 17, 18 | syl 14 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
| 20 | 16, 19 | mtbiri 676 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
| 21 | 5, 20 | pm2.65i 640 | 1 ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 {crab 2487 Vcvv 2771 𝒫 cpw 3615 ran crn 4675 Fn wfn 5265 –onto→wfo 5268 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fo 5276 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |