ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  canth GIF version

Theorem canth 5796
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1488 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
Hypothesis
Ref Expression
canth.1 𝐴 ∈ V
Assertion
Ref Expression
canth ¬ 𝐹:𝐴onto→𝒫 𝐴

Proof of Theorem canth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4 𝐴 ∈ V
2 ssrab2 3227 . . . 4 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ⊆ 𝐴
31, 2elpwi2 4137 . . 3 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ 𝒫 𝐴
4 forn 5413 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴)
53, 4eleqtrrid 2256 . 2 (𝐹:𝐴onto→𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
6 pm5.19 696 . . . . . 6 ¬ (𝑦 ∈ (𝐹𝑦) ↔ ¬ 𝑦 ∈ (𝐹𝑦))
7 eleq2 2230 . . . . . . 7 ((𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} → (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
8 id 19 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
9 fveq2 5486 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
108, 9eleq12d 2237 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑦)))
1110notbid 657 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹𝑥) ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
1211elrab3 2883 . . . . . . 7 (𝑦𝐴 → (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
137, 12sylan9bbr 459 . . . . . 6 ((𝑦𝐴 ∧ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}) → (𝑦 ∈ (𝐹𝑦) ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
146, 13mto 652 . . . . 5 ¬ (𝑦𝐴 ∧ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)})
1514imnani 681 . . . 4 (𝑦𝐴 → ¬ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)})
1615nrex 2558 . . 3 ¬ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}
17 fofn 5412 . . . 4 (𝐹:𝐴onto→𝒫 𝐴𝐹 Fn 𝐴)
18 fvelrnb 5534 . . . 4 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1917, 18syl 14 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
2016, 19mtbiri 665 . 2 (𝐹:𝐴onto→𝒫 𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
215, 20pm2.65i 629 1 ¬ 𝐹:𝐴onto→𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  {crab 2448  Vcvv 2726  𝒫 cpw 3559  ran crn 4605   Fn wfn 5183  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator