![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > canth | GIF version |
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1511 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.) |
Ref | Expression |
---|---|
canth.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth | ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ssrab2 3264 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ⊆ 𝐴 | |
3 | 1, 2 | elpwi2 4187 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ 𝒫 𝐴 |
4 | forn 5479 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴) | |
5 | 3, 4 | eleqtrrid 2283 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
6 | pm5.19 707 | . . . . . 6 ⊢ ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦)) | |
7 | eleq2 2257 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} → (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
8 | id 19 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
9 | fveq2 5554 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
10 | 8, 9 | eleq12d 2264 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑦))) |
11 | 10 | notbid 668 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹‘𝑥) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
12 | 11 | elrab3 2917 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
13 | 7, 12 | sylan9bbr 463 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) → (𝑦 ∈ (𝐹‘𝑦) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
14 | 6, 13 | mto 663 | . . . . 5 ⊢ ¬ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
15 | 14 | imnani 692 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
16 | 15 | nrex 2586 | . . 3 ⊢ ¬ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} |
17 | fofn 5478 | . . . 4 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → 𝐹 Fn 𝐴) | |
18 | fvelrnb 5604 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
19 | 17, 18 | syl 14 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
20 | 16, 19 | mtbiri 676 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
21 | 5, 20 | pm2.65i 640 | 1 ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 Vcvv 2760 𝒫 cpw 3601 ran crn 4660 Fn wfn 5249 –onto→wfo 5252 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fo 5260 df-fv 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |