![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtruex | GIF version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 3990 can also be summarized as "at least two sets exist", the difference is that dtruarb 3990 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2615 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snex 3984 | . . . 4 ⊢ {𝑦} ∈ V |
3 | 2 | isseti 2618 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
4 | elirrv 4327 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
5 | vsnid 3450 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
6 | eleq2 2146 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
7 | 5, 6 | mpbiri 166 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
8 | 4, 7 | mto 621 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
9 | eqtr 2100 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
10 | 8, 9 | mto 621 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
11 | ancom 262 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
12 | 10, 11 | mtbi 628 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
13 | 12 | imnani 658 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
14 | 3, 13 | eximii 1534 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
15 | equcom 1635 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
16 | 15 | notbii 627 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
17 | 16 | exbii 1537 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
18 | 14, 17 | mpbi 143 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1285 ∃wex 1422 ∈ wcel 1434 {csn 3422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-setind 4316 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-v 2614 df-dif 2986 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 |
This theorem is referenced by: dtru 4339 eunex 4340 brprcneu 5246 |
Copyright terms: Public domain | W3C validator |