![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtruex | GIF version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4203 can also be summarized as "at least two sets exist", the difference is that dtruarb 4203 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2752 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snex 4197 | . . . 4 ⊢ {𝑦} ∈ V |
3 | 2 | isseti 2757 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
4 | elirrv 4559 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
5 | vsnid 3636 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
6 | eleq2 2251 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
7 | 5, 6 | mpbiri 168 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
8 | 4, 7 | mto 663 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
9 | eqtr 2205 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
10 | 8, 9 | mto 663 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
11 | ancom 266 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
12 | 10, 11 | mtbi 671 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
13 | 12 | imnani 692 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
14 | 3, 13 | eximii 1612 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
15 | equcom 1716 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
16 | 15 | notbii 669 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
17 | 16 | exbii 1615 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
18 | 14, 17 | mpbi 145 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 {csn 3604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 |
This theorem is referenced by: dtru 4571 eunex 4572 brprcneu 5520 |
Copyright terms: Public domain | W3C validator |