| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruex | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4225 can also be summarized as "at least two sets exist", the difference is that dtruarb 4225 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | snex 4219 | . . . 4 ⊢ {𝑦} ∈ V |
| 3 | 2 | isseti 2771 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
| 4 | elirrv 4585 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 5 | vsnid 3655 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
| 6 | eleq2 2260 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
| 8 | 4, 7 | mto 663 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
| 9 | eqtr 2214 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
| 10 | 8, 9 | mto 663 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
| 11 | ancom 266 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
| 12 | 10, 11 | mtbi 671 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
| 13 | 12 | imnani 692 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
| 14 | 3, 13 | eximii 1616 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
| 15 | equcom 1720 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 16 | 15 | notbii 669 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
| 17 | 16 | exbii 1619 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
| 18 | 14, 17 | mpbi 145 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: dtru 4597 eunex 4598 brprcneu 5554 |
| Copyright terms: Public domain | W3C validator |