| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruex | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4274 can also be summarized as "at least two sets exist", the difference is that dtruarb 4274 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | snex 4268 | . . . 4 ⊢ {𝑦} ∈ V |
| 3 | 2 | isseti 2808 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
| 4 | elirrv 4637 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 5 | vsnid 3698 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
| 6 | eleq2 2293 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
| 8 | 4, 7 | mto 666 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
| 9 | eqtr 2247 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
| 10 | 8, 9 | mto 666 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
| 11 | ancom 266 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
| 12 | 10, 11 | mtbi 674 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
| 13 | 12 | imnani 695 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
| 14 | 3, 13 | eximii 1648 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
| 15 | equcom 1752 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 16 | 15 | notbii 672 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
| 17 | 16 | exbii 1651 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
| 18 | 14, 17 | mpbi 145 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: dtru 4649 eunex 4650 brprcneu 5616 |
| Copyright terms: Public domain | W3C validator |