ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruex GIF version

Theorem dtruex 4570
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4203 can also be summarized as "at least two sets exist", the difference is that dtruarb 4203 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtruex 𝑥 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruex
StepHypRef Expression
1 vex 2752 . . . . 5 𝑦 ∈ V
21snex 4197 . . . 4 {𝑦} ∈ V
32isseti 2757 . . 3 𝑥 𝑥 = {𝑦}
4 elirrv 4559 . . . . . . 7 ¬ 𝑦𝑦
5 vsnid 3636 . . . . . . . 8 𝑦 ∈ {𝑦}
6 eleq2 2251 . . . . . . . 8 (𝑦 = {𝑦} → (𝑦𝑦𝑦 ∈ {𝑦}))
75, 6mpbiri 168 . . . . . . 7 (𝑦 = {𝑦} → 𝑦𝑦)
84, 7mto 663 . . . . . 6 ¬ 𝑦 = {𝑦}
9 eqtr 2205 . . . . . 6 ((𝑦 = 𝑥𝑥 = {𝑦}) → 𝑦 = {𝑦})
108, 9mto 663 . . . . 5 ¬ (𝑦 = 𝑥𝑥 = {𝑦})
11 ancom 266 . . . . 5 ((𝑦 = 𝑥𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥))
1210, 11mtbi 671 . . . 4 ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)
1312imnani 692 . . 3 (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥)
143, 13eximii 1612 . 2 𝑥 ¬ 𝑦 = 𝑥
15 equcom 1716 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
1615notbii 669 . . 3 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦)
1716exbii 1615 . 2 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦)
1814, 17mpbi 145 1 𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1363  wex 1502  wcel 2158  {csn 3604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610
This theorem is referenced by:  dtru  4571  eunex  4572  brprcneu  5520
  Copyright terms: Public domain W3C validator