ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruex GIF version

Theorem dtruex 4614
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4242 can also be summarized as "at least two sets exist", the difference is that dtruarb 4242 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtruex 𝑥 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruex
StepHypRef Expression
1 vex 2776 . . . . 5 𝑦 ∈ V
21snex 4236 . . . 4 {𝑦} ∈ V
32isseti 2782 . . 3 𝑥 𝑥 = {𝑦}
4 elirrv 4603 . . . . . . 7 ¬ 𝑦𝑦
5 vsnid 3669 . . . . . . . 8 𝑦 ∈ {𝑦}
6 eleq2 2270 . . . . . . . 8 (𝑦 = {𝑦} → (𝑦𝑦𝑦 ∈ {𝑦}))
75, 6mpbiri 168 . . . . . . 7 (𝑦 = {𝑦} → 𝑦𝑦)
84, 7mto 664 . . . . . 6 ¬ 𝑦 = {𝑦}
9 eqtr 2224 . . . . . 6 ((𝑦 = 𝑥𝑥 = {𝑦}) → 𝑦 = {𝑦})
108, 9mto 664 . . . . 5 ¬ (𝑦 = 𝑥𝑥 = {𝑦})
11 ancom 266 . . . . 5 ((𝑦 = 𝑥𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥))
1210, 11mtbi 672 . . . 4 ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)
1312imnani 693 . . 3 (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥)
143, 13eximii 1626 . 2 𝑥 ¬ 𝑦 = 𝑥
15 equcom 1730 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
1615notbii 670 . . 3 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦)
1716exbii 1629 . 2 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦)
1814, 17mpbi 145 1 𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wex 1516  wcel 2177  {csn 3637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643
This theorem is referenced by:  dtru  4615  eunex  4616  brprcneu  5581
  Copyright terms: Public domain W3C validator