![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtruex | GIF version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4220 can also be summarized as "at least two sets exist", the difference is that dtruarb 4220 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snex 4214 | . . . 4 ⊢ {𝑦} ∈ V |
3 | 2 | isseti 2768 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
4 | elirrv 4580 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
5 | vsnid 3650 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
6 | eleq2 2257 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
7 | 5, 6 | mpbiri 168 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
8 | 4, 7 | mto 663 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
9 | eqtr 2211 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
10 | 8, 9 | mto 663 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
11 | ancom 266 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
12 | 10, 11 | mtbi 671 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
13 | 12 | imnani 692 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
14 | 3, 13 | eximii 1613 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
15 | equcom 1717 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
16 | 15 | notbii 669 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
17 | 16 | exbii 1616 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
18 | 14, 17 | mpbi 145 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 |
This theorem is referenced by: dtru 4592 eunex 4593 brprcneu 5547 |
Copyright terms: Public domain | W3C validator |