| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruex | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4242 can also be summarized as "at least two sets exist", the difference is that dtruarb 4242 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | snex 4236 | . . . 4 ⊢ {𝑦} ∈ V |
| 3 | 2 | isseti 2782 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
| 4 | elirrv 4603 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 5 | vsnid 3669 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
| 6 | eleq2 2270 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
| 8 | 4, 7 | mto 664 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
| 9 | eqtr 2224 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
| 10 | 8, 9 | mto 664 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
| 11 | ancom 266 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
| 12 | 10, 11 | mtbi 672 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
| 13 | 12 | imnani 693 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
| 14 | 3, 13 | eximii 1626 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
| 15 | equcom 1730 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 16 | 15 | notbii 670 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
| 17 | 16 | exbii 1629 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
| 18 | 14, 17 | mpbi 145 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {csn 3637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 |
| This theorem is referenced by: dtru 4615 eunex 4616 brprcneu 5581 |
| Copyright terms: Public domain | W3C validator |