Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dtruex | GIF version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4170 can also be summarized as "at least two sets exist", the difference is that dtruarb 4170 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snex 4164 | . . . 4 ⊢ {𝑦} ∈ V |
3 | 2 | isseti 2734 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
4 | elirrv 4525 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
5 | vsnid 3608 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
6 | eleq2 2230 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
7 | 5, 6 | mpbiri 167 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
8 | 4, 7 | mto 652 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
9 | eqtr 2183 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
10 | 8, 9 | mto 652 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
11 | ancom 264 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
12 | 10, 11 | mtbi 660 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
13 | 12 | imnani 681 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
14 | 3, 13 | eximii 1590 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
15 | equcom 1694 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
16 | 15 | notbii 658 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
17 | 16 | exbii 1593 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
18 | 14, 17 | mpbi 144 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: dtru 4537 eunex 4538 brprcneu 5479 |
Copyright terms: Public domain | W3C validator |