ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndcel GIF version

Theorem nndcel 6440
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
Assertion
Ref Expression
nndcel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)

Proof of Theorem nndcel
StepHypRef Expression
1 nntri3or 6433 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 orc 702 . . . 4 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3 elirr 4498 . . . . . 6 ¬ 𝐵𝐵
4 eleq1 2220 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
53, 4mtbiri 665 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
65olcd 724 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
7 en2lp 4511 . . . . . 6 ¬ (𝐵𝐴𝐴𝐵)
87imnani 681 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
98olcd 724 . . . 4 (𝐵𝐴 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
102, 6, 93jaoi 1285 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
111, 10syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
12 df-dc 821 . 2 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1311, 12sylibr 133 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3o 962   = wceq 1335  wcel 2128  ωcom 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548
This theorem is referenced by:  enumctlemm  7048  nnnninf  7058  ltdcpi  7226  nninfalllemn  13542
  Copyright terms: Public domain W3C validator