ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndcel GIF version

Theorem nndcel 6553
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
Assertion
Ref Expression
nndcel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)

Proof of Theorem nndcel
StepHypRef Expression
1 nntri3or 6546 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 orc 713 . . . 4 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3 elirr 4573 . . . . . 6 ¬ 𝐵𝐵
4 eleq1 2256 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
53, 4mtbiri 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
65olcd 735 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
7 en2lp 4586 . . . . . 6 ¬ (𝐵𝐴𝐴𝐵)
87imnani 692 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
98olcd 735 . . . 4 (𝐵𝐴 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
102, 6, 93jaoi 1314 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
111, 10syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
12 df-dc 836 . 2 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1311, 12sylibr 134 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623
This theorem is referenced by:  enumctlemm  7173  nnnninf  7185  nnnninfeq  7187  ltdcpi  7383  nninfinf  10514  nninfctlemfo  12177
  Copyright terms: Public domain W3C validator