| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndcel | GIF version | ||
| Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
| Ref | Expression |
|---|---|
| nndcel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nntri3or 6602 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 2 | orc 714 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
| 3 | elirr 4607 | . . . . . 6 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 4 | eleq1 2270 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐵 ∈ 𝐵)) | |
| 5 | 3, 4 | mtbiri 677 | . . . . 5 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| 6 | 5 | olcd 736 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 7 | en2lp 4620 | . . . . . 6 ⊢ ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) | |
| 8 | 7 | imnani 693 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
| 9 | 8 | olcd 736 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 10 | 2, 6, 9 | 3jaoi 1316 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 11 | 1, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 12 | df-dc 837 | . 2 ⊢ (DECID 𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 ωcom 4656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: enumctlemm 7242 nnnninf 7254 nnnninfeq 7256 ltdcpi 7471 nninfinf 10625 nninfctlemfo 12476 |
| Copyright terms: Public domain | W3C validator |