| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndcel | GIF version | ||
| Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
| Ref | Expression |
|---|---|
| nndcel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nntri3or 6637 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 2 | orc 717 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
| 3 | elirr 4632 | . . . . . 6 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 4 | eleq1 2292 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐵 ∈ 𝐵)) | |
| 5 | 3, 4 | mtbiri 679 | . . . . 5 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| 6 | 5 | olcd 739 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 7 | en2lp 4645 | . . . . . 6 ⊢ ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) | |
| 8 | 7 | imnani 695 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
| 9 | 8 | olcd 739 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 10 | 2, 6, 9 | 3jaoi 1337 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 11 | 1, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
| 12 | df-dc 840 | . 2 ⊢ (DECID 𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: enumctlemm 7277 nnnninf 7289 nnnninfeq 7291 ltdcpi 7506 nninfinf 10660 nninfctlemfo 12556 |
| Copyright terms: Public domain | W3C validator |