![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndcel | GIF version |
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
Ref | Expression |
---|---|
nndcel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6548 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
2 | orc 713 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
3 | elirr 4574 | . . . . . 6 ⊢ ¬ 𝐵 ∈ 𝐵 | |
4 | eleq1 2256 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐵 ∈ 𝐵)) | |
5 | 3, 4 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
6 | 5 | olcd 735 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
7 | en2lp 4587 | . . . . . 6 ⊢ ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) | |
8 | 7 | imnani 692 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
9 | 8 | olcd 735 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
10 | 2, 6, 9 | 3jaoi 1314 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
11 | 1, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
12 | df-dc 836 | . 2 ⊢ (DECID 𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 |
This theorem is referenced by: enumctlemm 7175 nnnninf 7187 nnnninfeq 7189 ltdcpi 7385 nninfinf 10517 nninfctlemfo 12180 |
Copyright terms: Public domain | W3C validator |