ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndcel GIF version

Theorem nndcel 6491
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
Assertion
Ref Expression
nndcel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)

Proof of Theorem nndcel
StepHypRef Expression
1 nntri3or 6484 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 orc 712 . . . 4 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3 elirr 4534 . . . . . 6 ¬ 𝐵𝐵
4 eleq1 2238 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
53, 4mtbiri 675 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
65olcd 734 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
7 en2lp 4547 . . . . . 6 ¬ (𝐵𝐴𝐴𝐵)
87imnani 691 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
98olcd 734 . . . 4 (𝐵𝐴 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
102, 6, 93jaoi 1303 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
111, 10syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
12 df-dc 835 . 2 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1311, 12sylibr 134 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834  w3o 977   = wceq 1353  wcel 2146  ωcom 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584
This theorem is referenced by:  enumctlemm  7103  nnnninf  7114  nnnninfeq  7116  ltdcpi  7297
  Copyright terms: Public domain W3C validator