![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndcel | GIF version |
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
Ref | Expression |
---|---|
nndcel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6496 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
2 | orc 712 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
3 | elirr 4542 | . . . . . 6 ⊢ ¬ 𝐵 ∈ 𝐵 | |
4 | eleq1 2240 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐵 ∈ 𝐵)) | |
5 | 3, 4 | mtbiri 675 | . . . . 5 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
6 | 5 | olcd 734 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
7 | en2lp 4555 | . . . . . 6 ⊢ ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) | |
8 | 7 | imnani 691 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
9 | 8 | olcd 734 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
10 | 2, 6, 9 | 3jaoi 1303 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
11 | 1, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
12 | df-dc 835 | . 2 ⊢ (DECID 𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 |
This theorem is referenced by: enumctlemm 7115 nnnninf 7126 nnnninfeq 7128 ltdcpi 7324 |
Copyright terms: Public domain | W3C validator |