Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndcel | GIF version |
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
Ref | Expression |
---|---|
nndcel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6461 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
2 | orc 702 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
3 | elirr 4518 | . . . . . 6 ⊢ ¬ 𝐵 ∈ 𝐵 | |
4 | eleq1 2229 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐵 ∈ 𝐵)) | |
5 | 3, 4 | mtbiri 665 | . . . . 5 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
6 | 5 | olcd 724 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
7 | en2lp 4531 | . . . . . 6 ⊢ ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) | |
8 | 7 | imnani 681 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
9 | 8 | olcd 724 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
10 | 2, 6, 9 | 3jaoi 1293 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
11 | 1, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) |
12 | df-dc 825 | . 2 ⊢ (DECID 𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵)) | |
13 | 11, 12 | sylibr 133 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: enumctlemm 7079 nnnninf 7090 nnnninfeq 7092 ltdcpi 7264 |
Copyright terms: Public domain | W3C validator |