ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndcel GIF version

Theorem nndcel 6558
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
Assertion
Ref Expression
nndcel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)

Proof of Theorem nndcel
StepHypRef Expression
1 nntri3or 6551 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 orc 713 . . . 4 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3 elirr 4577 . . . . . 6 ¬ 𝐵𝐵
4 eleq1 2259 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
53, 4mtbiri 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
65olcd 735 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
7 en2lp 4590 . . . . . 6 ¬ (𝐵𝐴𝐴𝐵)
87imnani 692 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
98olcd 735 . . . 4 (𝐵𝐴 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
102, 6, 93jaoi 1314 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
111, 10syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
12 df-dc 836 . 2 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1311, 12sylibr 134 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  enumctlemm  7180  nnnninf  7192  nnnninfeq  7194  ltdcpi  7390  nninfinf  10535  nninfctlemfo  12207
  Copyright terms: Public domain W3C validator