ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2 GIF version

Theorem nntri2 6593
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))

Proof of Theorem nntri2
StepHypRef Expression
1 elirr 4597 . . . . 5 ¬ 𝐴𝐴
2 eleq2 2270 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 676 . . . 4 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 628 . . 3 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
5 en2lp 4610 . . . 4 ¬ (𝐴𝐵𝐵𝐴)
65imnani 693 . . 3 (𝐴𝐵 → ¬ 𝐵𝐴)
7 ioran 754 . . 3 (¬ (𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵𝐴))
84, 6, 7sylanbrc 417 . 2 (𝐴𝐵 → ¬ (𝐴 = 𝐵𝐵𝐴))
9 nntri3or 6592 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
10 3orass 984 . . . . 5 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
119, 10sylib 122 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
1211orcomd 731 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) ∨ 𝐴𝐵))
1312ord 726 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵𝐵𝐴) → 𝐴𝐵))
148, 13impbid2 143 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2177  ωcom 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647
This theorem is referenced by:  nnaord  6608  nnmord  6616  pitric  7454
  Copyright terms: Public domain W3C validator