Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntri2 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nntri2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4518 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | eleq2 2230 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | mtbii 664 | . . . 4 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
4 | 3 | con2i 617 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 = 𝐵) |
5 | en2lp 4531 | . . . 4 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | |
6 | 5 | imnani 681 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
7 | ioran 742 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 414 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
9 | nntri3or 6461 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
10 | 3orass 971 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
11 | 9, 10 | sylib 121 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
12 | 11 | orcomd 719 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐴 ∈ 𝐵)) |
13 | 12 | ord 714 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐵)) |
14 | 8, 13 | impbid2 142 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnaord 6477 nnmord 6485 pitric 7262 |
Copyright terms: Public domain | W3C validator |