| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri2 | GIF version | ||
| Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4597 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | eleq2 2270 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | mtbii 676 | . . . 4 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| 4 | 3 | con2i 628 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 = 𝐵) |
| 5 | en2lp 4610 | . . . 4 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | |
| 6 | 5 | imnani 693 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| 7 | ioran 754 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴)) | |
| 8 | 4, 6, 7 | sylanbrc 417 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 9 | nntri3or 6592 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 10 | 3orass 984 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
| 11 | 9, 10 | sylib 122 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 12 | 11 | orcomd 731 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐴 ∈ 𝐵)) |
| 13 | 12 | ord 726 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐵)) |
| 14 | 8, 13 | impbid2 143 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 |
| This theorem is referenced by: nnaord 6608 nnmord 6616 pitric 7454 |
| Copyright terms: Public domain | W3C validator |