ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2 GIF version

Theorem nntri2 6497
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))

Proof of Theorem nntri2
StepHypRef Expression
1 elirr 4542 . . . . 5 ¬ 𝐴𝐴
2 eleq2 2241 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 674 . . . 4 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 627 . . 3 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
5 en2lp 4555 . . . 4 ¬ (𝐴𝐵𝐵𝐴)
65imnani 691 . . 3 (𝐴𝐵 → ¬ 𝐵𝐴)
7 ioran 752 . . 3 (¬ (𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵𝐴))
84, 6, 7sylanbrc 417 . 2 (𝐴𝐵 → ¬ (𝐴 = 𝐵𝐵𝐴))
9 nntri3or 6496 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
10 3orass 981 . . . . 5 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
119, 10sylib 122 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
1211orcomd 729 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) ∨ 𝐴𝐵))
1312ord 724 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵𝐵𝐴) → 𝐴𝐵))
148, 13impbid2 143 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148  ωcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592
This theorem is referenced by:  nnaord  6512  nnmord  6520  pitric  7322
  Copyright terms: Public domain W3C validator