ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2 GIF version

Theorem nntri2 6552
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))

Proof of Theorem nntri2
StepHypRef Expression
1 elirr 4577 . . . . 5 ¬ 𝐴𝐴
2 eleq2 2260 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 675 . . . 4 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 628 . . 3 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
5 en2lp 4590 . . . 4 ¬ (𝐴𝐵𝐵𝐴)
65imnani 692 . . 3 (𝐴𝐵 → ¬ 𝐵𝐴)
7 ioran 753 . . 3 (¬ (𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵𝐴))
84, 6, 7sylanbrc 417 . 2 (𝐴𝐵 → ¬ (𝐴 = 𝐵𝐵𝐴))
9 nntri3or 6551 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
10 3orass 983 . . . . 5 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
119, 10sylib 122 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ∨ (𝐴 = 𝐵𝐵𝐴)))
1211orcomd 730 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) ∨ 𝐴𝐵))
1312ord 725 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵𝐵𝐴) → 𝐴𝐵))
148, 13impbid2 143 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2167  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnaord  6567  nnmord  6575  pitric  7388
  Copyright terms: Public domain W3C validator