| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| mpjaod | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
| 2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 2, 3 | jaod 722 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3637 opth1 4322 onsucelsucexmidlem 4621 reldmtpos 6405 dftpos4 6415 nnm00 6684 xpfi 7102 omp1eomlem 7269 ctmlemr 7283 ctssdclemn0 7285 finomni 7315 indpi 7537 enq0tr 7629 prarloclem3step 7691 distrlem4prl 7779 distrlem4pru 7780 lelttr 8243 nn1suc 9137 nnsub 9157 nn0lt2 9536 uzin 9763 xrlelttr 10010 xlesubadd 10087 fzfig 10660 seq3id 10755 seq3z 10758 faclbnd 10971 facavg 10976 bcval5 10993 hashfzo 11052 swrdccat3blem 11279 iserex 11858 fsum3cvg 11897 fsumf1o 11909 fisumss 11911 fsumcl2lem 11917 fsumadd 11925 fsummulc2 11967 isumsplit 12010 fprodf1o 12107 prodssdc 12108 fprodssdc 12109 fprodmul 12110 absdvdsb 12328 dvdsabsb 12329 dvdsabseq 12366 m1exp1 12420 flodddiv4 12455 gcdaddm 12513 gcdabs1 12518 lcmdvds 12609 prmind2 12650 rpexp 12683 fermltl 12764 pcxnn0cl 12841 pcxcl 12842 pcabs 12857 pcmpt 12874 pockthg 12888 mulgnn0ass 13703 lgseisenlem2 15758 2lgslem1c 15777 trilpolemcl 16435 trilpolemlt1 16439 |
| Copyright terms: Public domain | W3C validator |