| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| mpjaod | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
| 2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 2, 3 | jaod 719 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3606 opth1 4284 onsucelsucexmidlem 4581 reldmtpos 6346 dftpos4 6356 nnm00 6623 xpfi 7036 omp1eomlem 7203 ctmlemr 7217 ctssdclemn0 7219 finomni 7249 indpi 7462 enq0tr 7554 prarloclem3step 7616 distrlem4prl 7704 distrlem4pru 7705 lelttr 8168 nn1suc 9062 nnsub 9082 nn0lt2 9461 uzin 9688 xrlelttr 9935 xlesubadd 10012 fzfig 10582 seq3id 10677 seq3z 10680 faclbnd 10893 facavg 10898 bcval5 10915 hashfzo 10974 iserex 11694 fsum3cvg 11733 fsumf1o 11745 fisumss 11747 fsumcl2lem 11753 fsumadd 11761 fsummulc2 11803 isumsplit 11846 fprodf1o 11943 prodssdc 11944 fprodssdc 11945 fprodmul 11946 absdvdsb 12164 dvdsabsb 12165 dvdsabseq 12202 m1exp1 12256 flodddiv4 12291 gcdaddm 12349 gcdabs1 12354 lcmdvds 12445 prmind2 12486 rpexp 12519 fermltl 12600 pcxnn0cl 12677 pcxcl 12678 pcabs 12693 pcmpt 12710 pockthg 12724 mulgnn0ass 13538 lgseisenlem2 15592 2lgslem1c 15611 trilpolemcl 16050 trilpolemlt1 16054 |
| Copyright terms: Public domain | W3C validator |