| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| mpjaod | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
| 2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 2, 3 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3595 opth1 4270 onsucelsucexmidlem 4566 reldmtpos 6320 dftpos4 6330 nnm00 6597 xpfi 7002 omp1eomlem 7169 ctmlemr 7183 ctssdclemn0 7185 finomni 7215 indpi 7428 enq0tr 7520 prarloclem3step 7582 distrlem4prl 7670 distrlem4pru 7671 lelttr 8134 nn1suc 9028 nnsub 9048 nn0lt2 9426 uzin 9653 xrlelttr 9900 xlesubadd 9977 fzfig 10541 seq3id 10636 seq3z 10639 faclbnd 10852 facavg 10857 bcval5 10874 hashfzo 10933 iserex 11523 fsum3cvg 11562 fsumf1o 11574 fisumss 11576 fsumcl2lem 11582 fsumadd 11590 fsummulc2 11632 isumsplit 11675 fprodf1o 11772 prodssdc 11773 fprodssdc 11774 fprodmul 11775 absdvdsb 11993 dvdsabsb 11994 dvdsabseq 12031 m1exp1 12085 flodddiv4 12120 gcdaddm 12178 gcdabs1 12183 lcmdvds 12274 prmind2 12315 rpexp 12348 fermltl 12429 pcxnn0cl 12506 pcxcl 12507 pcabs 12522 pcmpt 12539 pockthg 12553 mulgnn0ass 13366 lgseisenlem2 15398 2lgslem1c 15417 trilpolemcl 15772 trilpolemlt1 15776 |
| Copyright terms: Public domain | W3C validator |