| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| mpjaod | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
| 2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 2, 3 | jaod 721 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3617 opth1 4301 onsucelsucexmidlem 4598 reldmtpos 6369 dftpos4 6379 nnm00 6646 xpfi 7062 omp1eomlem 7229 ctmlemr 7243 ctssdclemn0 7245 finomni 7275 indpi 7497 enq0tr 7589 prarloclem3step 7651 distrlem4prl 7739 distrlem4pru 7740 lelttr 8203 nn1suc 9097 nnsub 9117 nn0lt2 9496 uzin 9723 xrlelttr 9970 xlesubadd 10047 fzfig 10619 seq3id 10714 seq3z 10717 faclbnd 10930 facavg 10935 bcval5 10952 hashfzo 11011 swrdccat3blem 11237 iserex 11816 fsum3cvg 11855 fsumf1o 11867 fisumss 11869 fsumcl2lem 11875 fsumadd 11883 fsummulc2 11925 isumsplit 11968 fprodf1o 12065 prodssdc 12066 fprodssdc 12067 fprodmul 12068 absdvdsb 12286 dvdsabsb 12287 dvdsabseq 12324 m1exp1 12378 flodddiv4 12413 gcdaddm 12471 gcdabs1 12476 lcmdvds 12567 prmind2 12608 rpexp 12641 fermltl 12722 pcxnn0cl 12799 pcxcl 12800 pcabs 12815 pcmpt 12832 pockthg 12846 mulgnn0ass 13661 lgseisenlem2 15715 2lgslem1c 15734 trilpolemcl 16316 trilpolemlt1 16320 |
| Copyright terms: Public domain | W3C validator |