Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaod | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 2, 3 | jaod 712 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ifbothdc 3558 opth1 4221 onsucelsucexmidlem 4513 reldmtpos 6232 dftpos4 6242 nnm00 6509 xpfi 6907 omp1eomlem 7071 ctmlemr 7085 ctssdclemn0 7087 finomni 7116 indpi 7304 enq0tr 7396 prarloclem3step 7458 distrlem4prl 7546 distrlem4pru 7547 lelttr 8008 nn1suc 8897 nnsub 8917 nn0lt2 9293 uzin 9519 xrlelttr 9763 xlesubadd 9840 fzfig 10386 seq3id 10464 seq3z 10467 faclbnd 10675 facavg 10680 bcval5 10697 hashfzo 10757 iserex 11302 fsum3cvg 11341 fsumf1o 11353 fisumss 11355 fsumcl2lem 11361 fsumadd 11369 fsummulc2 11411 isumsplit 11454 fprodf1o 11551 prodssdc 11552 fprodssdc 11553 fprodmul 11554 absdvdsb 11771 dvdsabsb 11772 dvdsabseq 11807 m1exp1 11860 flodddiv4 11893 gcdaddm 11939 gcdabs1 11944 lcmdvds 12033 prmind2 12074 rpexp 12107 fermltl 12188 pcxnn0cl 12264 pcxcl 12265 pcabs 12279 pcmpt 12295 pockthg 12309 trilpolemcl 14069 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |