ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nford GIF version

Theorem nford 1555
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓𝜒). (Contributed by Jim Kingdon, 29-Oct-2019.)
Hypotheses
Ref Expression
nford.1 (𝜑 → Ⅎ𝑥𝜓)
nford.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nford (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nford
StepHypRef Expression
1 nford.1 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
2 nford.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
3 df-nf 1449 . . . . . . 7 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
4 df-nf 1449 . . . . . . 7 (Ⅎ𝑥𝜒 ↔ ∀𝑥(𝜒 → ∀𝑥𝜒))
53, 4anbi12i 456 . . . . . 6 ((Ⅎ𝑥𝜓 ∧ Ⅎ𝑥𝜒) ↔ (∀𝑥(𝜓 → ∀𝑥𝜓) ∧ ∀𝑥(𝜒 → ∀𝑥𝜒)))
65biimpi 119 . . . . 5 ((Ⅎ𝑥𝜓 ∧ Ⅎ𝑥𝜒) → (∀𝑥(𝜓 → ∀𝑥𝜓) ∧ ∀𝑥(𝜒 → ∀𝑥𝜒)))
71, 2, 6syl2anc 409 . . . 4 (𝜑 → (∀𝑥(𝜓 → ∀𝑥𝜓) ∧ ∀𝑥(𝜒 → ∀𝑥𝜒)))
8 19.26 1469 . . . 4 (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜒)) ↔ (∀𝑥(𝜓 → ∀𝑥𝜓) ∧ ∀𝑥(𝜒 → ∀𝑥𝜒)))
97, 8sylibr 133 . . 3 (𝜑 → ∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜒)))
10 orc 702 . . . . . . 7 (𝜓 → (𝜓𝜒))
1110alimi 1443 . . . . . 6 (∀𝑥𝜓 → ∀𝑥(𝜓𝜒))
1211imim2i 12 . . . . 5 ((𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥(𝜓𝜒)))
13 olc 701 . . . . . . 7 (𝜒 → (𝜓𝜒))
1413alimi 1443 . . . . . 6 (∀𝑥𝜒 → ∀𝑥(𝜓𝜒))
1514imim2i 12 . . . . 5 ((𝜒 → ∀𝑥𝜒) → (𝜒 → ∀𝑥(𝜓𝜒)))
1612, 15jaao 709 . . . 4 (((𝜓 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜒)) → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
1716alimi 1443 . . 3 (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜒)) → ∀𝑥((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
189, 17syl 14 . 2 (𝜑 → ∀𝑥((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
19 df-nf 1449 . 2 (Ⅎ𝑥(𝜓𝜒) ↔ ∀𝑥((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
2018, 19sylibr 133 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfifd  3547
  Copyright terms: Public domain W3C validator