ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3or GIF version

Theorem nntri3or 6461
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nntri3or ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem nntri3or
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
2 eqeq2 2175 . . . . 5 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
3 eleq1 2229 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
41, 2, 33orbi123d 1301 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
54imbi2d 229 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥𝐴 = 𝑥𝑥𝐴)) ↔ (𝐴 ∈ ω → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))))
6 eleq2 2230 . . . . 5 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
7 eqeq2 2175 . . . . 5 (𝑥 = ∅ → (𝐴 = 𝑥𝐴 = ∅))
8 eleq1 2229 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
96, 7, 83orbi123d 1301 . . . 4 (𝑥 = ∅ → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
10 eleq2 2230 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
11 eqeq2 2175 . . . . 5 (𝑥 = 𝑦 → (𝐴 = 𝑥𝐴 = 𝑦))
12 eleq1 2229 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1310, 11, 123orbi123d 1301 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴𝑦𝐴 = 𝑦𝑦𝐴)))
14 eleq2 2230 . . . . 5 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
15 eqeq2 2175 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 = 𝑥𝐴 = suc 𝑦))
16 eleq1 2229 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
1714, 15, 163orbi123d 1301 . . . 4 (𝑥 = suc 𝑦 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
18 0elnn 4596 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
19 olc 701 . . . . . 6 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
20 3orass 971 . . . . . 6 ((𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
2119, 20sylibr 133 . . . . 5 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2218, 21syl 14 . . . 4 (𝐴 ∈ ω → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴))
23 df-3or 969 . . . . . 6 ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ ((𝐴𝑦𝐴 = 𝑦) ∨ 𝑦𝐴))
24 elex 2737 . . . . . . . 8 (𝑦 ∈ ω → 𝑦 ∈ V)
25 elsuc2g 4383 . . . . . . . . 9 (𝑦 ∈ V → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
26 3mix1 1156 . . . . . . . . 9 (𝐴 ∈ suc 𝑦 → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
2725, 26syl6bir 163 . . . . . . . 8 (𝑦 ∈ V → ((𝐴𝑦𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
2824, 27syl 14 . . . . . . 7 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
29 nnsucelsuc 6459 . . . . . . . . 9 (𝐴 ∈ ω → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
30 elsuci 4381 . . . . . . . . 9 (suc 𝑦 ∈ suc 𝐴 → (suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴))
3129, 30syl6bi 162 . . . . . . . 8 (𝐴 ∈ ω → (𝑦𝐴 → (suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴)))
32 eqcom 2167 . . . . . . . . . . . . 13 (suc 𝑦 = 𝐴𝐴 = suc 𝑦)
3332orbi2i 752 . . . . . . . . . . . 12 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) ↔ (suc 𝑦𝐴𝐴 = suc 𝑦))
3433biimpi 119 . . . . . . . . . . 11 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (suc 𝑦𝐴𝐴 = suc 𝑦))
3534orcomd 719 . . . . . . . . . 10 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
3635olcd 724 . . . . . . . . 9 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
37 3orass 971 . . . . . . . . 9 ((𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴) ↔ (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
3836, 37sylibr 133 . . . . . . . 8 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
3931, 38syl6 33 . . . . . . 7 (𝐴 ∈ ω → (𝑦𝐴 → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4028, 39jaao 709 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) ∨ 𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4123, 40syl5bi 151 . . . . 5 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4241ex 114 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))))
439, 13, 17, 22, 42finds2 4578 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥𝐴 = 𝑥𝑥𝐴)))
445, 43vtoclga 2792 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
4544impcom 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 967   = wceq 1343  wcel 2136  Vcvv 2726  c0 3409  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nntri2  6462  nntri1  6464  nntri3  6465  nntri2or2  6466  nndceq  6467  nndcel  6468  nnsseleq  6469  nntr2  6471  nnawordex  6496  nnwetri  6881  nnnninfeq  7092  ltsopi  7261  pitri3or  7263  frec2uzlt2d  10339  ennnfonelemk  12333  ennnfonelemex  12347
  Copyright terms: Public domain W3C validator