| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2260 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
| 2 | | eqeq2 2206 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
| 3 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 4 | 1, 2, 3 | 3orbi123d 1322 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 5 | 4 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴)) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)))) |
| 6 | | eleq2 2260 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
| 7 | | eqeq2 2206 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 = 𝑥 ↔ 𝐴 = ∅)) |
| 8 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
| 9 | 6, 7, 8 | 3orbi123d 1322 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴) ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴))) |
| 10 | | eleq2 2260 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| 11 | | eqeq2 2206 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 = 𝑥 ↔ 𝐴 = 𝑦)) |
| 12 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 13 | 10, 11, 12 | 3orbi123d 1322 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴) ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴))) |
| 14 | | eleq2 2260 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
| 15 | | eqeq2 2206 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 = 𝑥 ↔ 𝐴 = suc 𝑦)) |
| 16 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
| 17 | 14, 15, 16 | 3orbi123d 1322 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴) ↔ (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 18 | | 0elnn 4656 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
| 19 | | olc 712 |
. . . . . 6
⊢ ((𝐴 = ∅ ∨ ∅ ∈
𝐴) → (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈
𝐴))) |
| 20 | | 3orass 983 |
. . . . . 6
⊢ ((𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈
𝐴) ↔ (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈
𝐴))) |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
⊢ ((𝐴 = ∅ ∨ ∅ ∈
𝐴) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
| 22 | 18, 21 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ω → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
| 23 | | df-3or 981 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ↔ ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ∨ 𝑦 ∈ 𝐴)) |
| 24 | | elex 2774 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → 𝑦 ∈ V) |
| 25 | | elsuc2g 4441 |
. . . . . . . . 9
⊢ (𝑦 ∈ V → (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦))) |
| 26 | | 3mix1 1168 |
. . . . . . . . 9
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴)) |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
⊢ (𝑦 ∈ V → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 28 | 24, 27 | syl 14 |
. . . . . . 7
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 29 | | nnsucelsuc 6558 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ suc 𝐴)) |
| 30 | | elsuci 4439 |
. . . . . . . . 9
⊢ (suc
𝑦 ∈ suc 𝐴 → (suc 𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴)) |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 → (suc 𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴))) |
| 32 | | eqcom 2198 |
. . . . . . . . . . . . 13
⊢ (suc
𝑦 = 𝐴 ↔ 𝐴 = suc 𝑦) |
| 33 | 32 | orbi2i 763 |
. . . . . . . . . . . 12
⊢ ((suc
𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴) ↔ (suc 𝑦 ∈ 𝐴 ∨ 𝐴 = suc 𝑦)) |
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
⊢ ((suc
𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴) → (suc 𝑦 ∈ 𝐴 ∨ 𝐴 = suc 𝑦)) |
| 35 | 34 | orcomd 730 |
. . . . . . . . . 10
⊢ ((suc
𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴)) |
| 36 | 35 | olcd 735 |
. . . . . . . . 9
⊢ ((suc
𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 37 | | 3orass 983 |
. . . . . . . . 9
⊢ ((𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
⊢ ((suc
𝑦 ∈ 𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴)) |
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 40 | 28, 39 | jaao 720 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ∨ 𝑦 ∈ 𝐴) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴))) |
| 42 | 41 | ex 115 |
. . . 4
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) → (𝐴 ∈ suc 𝑦 ∨ 𝐴 = suc 𝑦 ∨ suc 𝑦 ∈ 𝐴)))) |
| 43 | 9, 13, 17, 22, 42 | finds2 4638 |
. . 3
⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝑥 ∨ 𝐴 = 𝑥 ∨ 𝑥 ∈ 𝐴))) |
| 44 | 5, 43 | vtoclga 2830 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 45 | 44 | impcom 125 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |