ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3or GIF version

Theorem nntri3or 6488
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nntri3or ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem nntri3or
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
2 eqeq2 2187 . . . . 5 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
3 eleq1 2240 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
41, 2, 33orbi123d 1311 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
54imbi2d 230 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥𝐴 = 𝑥𝑥𝐴)) ↔ (𝐴 ∈ ω → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))))
6 eleq2 2241 . . . . 5 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
7 eqeq2 2187 . . . . 5 (𝑥 = ∅ → (𝐴 = 𝑥𝐴 = ∅))
8 eleq1 2240 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
96, 7, 83orbi123d 1311 . . . 4 (𝑥 = ∅ → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
10 eleq2 2241 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
11 eqeq2 2187 . . . . 5 (𝑥 = 𝑦 → (𝐴 = 𝑥𝐴 = 𝑦))
12 eleq1 2240 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1310, 11, 123orbi123d 1311 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴𝑦𝐴 = 𝑦𝑦𝐴)))
14 eleq2 2241 . . . . 5 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
15 eqeq2 2187 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 = 𝑥𝐴 = suc 𝑦))
16 eleq1 2240 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
1714, 15, 163orbi123d 1311 . . . 4 (𝑥 = suc 𝑦 → ((𝐴𝑥𝐴 = 𝑥𝑥𝐴) ↔ (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
18 0elnn 4615 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
19 olc 711 . . . . . 6 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
20 3orass 981 . . . . . 6 ((𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ∅ ∨ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
2119, 20sylibr 134 . . . . 5 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2218, 21syl 14 . . . 4 (𝐴 ∈ ω → (𝐴 ∈ ∅ ∨ 𝐴 = ∅ ∨ ∅ ∈ 𝐴))
23 df-3or 979 . . . . . 6 ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ ((𝐴𝑦𝐴 = 𝑦) ∨ 𝑦𝐴))
24 elex 2748 . . . . . . . 8 (𝑦 ∈ ω → 𝑦 ∈ V)
25 elsuc2g 4402 . . . . . . . . 9 (𝑦 ∈ V → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
26 3mix1 1166 . . . . . . . . 9 (𝐴 ∈ suc 𝑦 → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
2725, 26syl6bir 164 . . . . . . . 8 (𝑦 ∈ V → ((𝐴𝑦𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
2824, 27syl 14 . . . . . . 7 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
29 nnsucelsuc 6486 . . . . . . . . 9 (𝐴 ∈ ω → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
30 elsuci 4400 . . . . . . . . 9 (suc 𝑦 ∈ suc 𝐴 → (suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴))
3129, 30syl6bi 163 . . . . . . . 8 (𝐴 ∈ ω → (𝑦𝐴 → (suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴)))
32 eqcom 2179 . . . . . . . . . . . . 13 (suc 𝑦 = 𝐴𝐴 = suc 𝑦)
3332orbi2i 762 . . . . . . . . . . . 12 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) ↔ (suc 𝑦𝐴𝐴 = suc 𝑦))
3433biimpi 120 . . . . . . . . . . 11 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (suc 𝑦𝐴𝐴 = suc 𝑦))
3534orcomd 729 . . . . . . . . . 10 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
3635olcd 734 . . . . . . . . 9 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
37 3orass 981 . . . . . . . . 9 ((𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴) ↔ (𝐴 ∈ suc 𝑦 ∨ (𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
3836, 37sylibr 134 . . . . . . . 8 ((suc 𝑦𝐴 ∨ suc 𝑦 = 𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))
3931, 38syl6 33 . . . . . . 7 (𝐴 ∈ ω → (𝑦𝐴 → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4028, 39jaao 719 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) ∨ 𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4123, 40biimtrid 152 . . . . 5 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴)))
4241ex 115 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) → (𝐴 ∈ suc 𝑦𝐴 = suc 𝑦 ∨ suc 𝑦𝐴))))
439, 13, 17, 22, 42finds2 4597 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥𝐴 = 𝑥𝑥𝐴)))
445, 43vtoclga 2803 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
4544impcom 125 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  w3o 977   = wceq 1353  wcel 2148  Vcvv 2737  c0 3422  suc csuc 4362  ωcom 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-uni 3808  df-int 3843  df-tr 4099  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587
This theorem is referenced by:  nntri2  6489  nntri1  6491  nntri3  6492  nntri2or2  6493  nndceq  6494  nndcel  6495  nnsseleq  6496  nntr2  6498  nnawordex  6524  nnwetri  6909  nnnninfeq  7120  ltsopi  7310  pitri3or  7312  frec2uzlt2d  10390  ennnfonelemk  12384  ennnfonelemex  12398
  Copyright terms: Public domain W3C validator