Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctr | GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 311 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpanl2 432 mpanr2 435 bm1.1 2150 undifss 3489 brprcneu 5479 mpoeq12 5902 tfri3 6335 ige2m2fzo 10133 |
Copyright terms: Public domain | W3C validator |