ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctl GIF version

Theorem jctl 312
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1 𝜓
Assertion
Ref Expression
jctl (𝜑 → (𝜓𝜑))

Proof of Theorem jctl
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 jctl.1 . 2 𝜓
31, 2jctil 310 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  mpanl1  431  mpanlr1  437  reg2exmidlema  4511  relop  4754  nn0n0n1ge2  9261  expge1  10492  4dvdseven  11854  ndvdsp1  11869
  Copyright terms: Public domain W3C validator