| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 315 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: op1steq 6275 fpmg 6771 pmresg 6773 pw2f1odc 6944 pm54.43 7310 prarloclemarch2 7545 prarloclemlt 7619 prsradd 7912 muleqadd 8754 divdivap1 8809 addltmul 9287 elfzp1b 10232 elfzm1b 10233 expp1zap 10746 expm1ap 10747 fiinbas 14571 opnneissb 14677 blssec 14960 |
| Copyright terms: Public domain | W3C validator |