ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr2 GIF version

Theorem mpanr2 438
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanr2.1 𝜒
mpanr2.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr2 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpanr2
StepHypRef Expression
1 mpanr2.1 . . 3 𝜒
21jctr 315 . 2 (𝜓 → (𝜓𝜒))
3 mpanr2.2 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
42, 3sylan2 286 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  op1steq  6232  fpmg  6728  pmresg  6730  pw2f1odc  6891  pm54.43  7250  prarloclemarch2  7479  prarloclemlt  7553  prsradd  7846  muleqadd  8687  divdivap1  8742  addltmul  9219  elfzp1b  10163  elfzm1b  10164  expp1zap  10659  expm1ap  10660  fiinbas  14217  opnneissb  14323  blssec  14606
  Copyright terms: Public domain W3C validator