Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpanr2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 313 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 284 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: op1steq 6158 fpmg 6652 pmresg 6654 pm54.43 7167 prarloclemarch2 7381 prarloclemlt 7455 prsradd 7748 muleqadd 8586 divdivap1 8640 addltmul 9114 elfzp1b 10053 elfzm1b 10054 expp1zap 10525 expm1ap 10526 fiinbas 12841 opnneissb 12949 blssec 13232 |
Copyright terms: Public domain | W3C validator |