Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctr 313 equvini 1751 funtp 5251 foimacnv 5460 respreima 5624 fpr 5678 dmtpos 6235 ixpsnf1o 6714 ssdomg 6756 exmidfodomrlemim 7178 archnqq 7379 recexgt0sr 7735 ige2m2fzo 10154 climeu 11259 algcvgblem 12003 qredeu 12051 qnumdencoprm 12147 qeqnumdivden 12148 eltg3i 12850 topbas 12861 neipsm 12948 lmbrf 13009 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |