ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 311
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 304 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  jctr  313  equvini  1746  funtp  5241  foimacnv  5450  respreima  5613  fpr  5667  dmtpos  6224  ixpsnf1o  6702  ssdomg  6744  exmidfodomrlemim  7157  archnqq  7358  recexgt0sr  7714  ige2m2fzo  10133  climeu  11237  algcvgblem  11981  qredeu  12029  qnumdencoprm  12125  qeqnumdivden  12126  eltg3i  12696  topbas  12707  neipsm  12794  lmbrf  12855  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator