![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 301 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: jctr 309 equvini 1695 funtp 5101 foimacnv 5306 respreima 5466 fpr 5518 dmtpos 6059 ixpsnf1o 6533 ssdomg 6575 exmidfodomrlemim 6924 archnqq 7073 recexgt0sr 7416 ige2m2fzo 9758 climeu 10855 algcvgblem 11474 qredeu 11522 qnumdencoprm 11614 qeqnumdivden 11615 eltg3i 11924 topbas 11935 neipsm 12022 lmbrf 12082 exmidsbthrlem 12633 |
Copyright terms: Public domain | W3C validator |