| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1804 funtp 5373 foimacnv 5589 respreima 5762 fpr 5820 dmtpos 6400 ixpsnf1o 6881 ssdomg 6928 exmidfodomrlemim 7375 archnqq 7600 recexgt0sr 7956 ige2m2fzo 10399 swrdlsw 11196 climeu 11802 algcvgblem 12566 qredeu 12614 qnumdencoprm 12710 qeqnumdivden 12711 eltg3i 14724 topbas 14735 neipsm 14822 lmbrf 14883 2lgslem1a 15761 usgredg2v 16016 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |