ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 306 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1782  funtp  5341  foimacnv  5557  respreima  5726  fpr  5784  dmtpos  6360  ixpsnf1o  6841  ssdomg  6888  exmidfodomrlemim  7335  archnqq  7560  recexgt0sr  7916  ige2m2fzo  10359  swrdlsw  11155  climeu  11692  algcvgblem  12456  qredeu  12504  qnumdencoprm  12600  qeqnumdivden  12601  eltg3i  14613  topbas  14624  neipsm  14711  lmbrf  14772  2lgslem1a  15650  exmidsbthrlem  16133
  Copyright terms: Public domain W3C validator