Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctr 313 equvini 1746 funtp 5241 foimacnv 5450 respreima 5613 fpr 5667 dmtpos 6224 ixpsnf1o 6702 ssdomg 6744 exmidfodomrlemim 7157 archnqq 7358 recexgt0sr 7714 ige2m2fzo 10133 climeu 11237 algcvgblem 11981 qredeu 12029 qnumdencoprm 12125 qeqnumdivden 12126 eltg3i 12696 topbas 12707 neipsm 12794 lmbrf 12855 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |