Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctr 313 equvini 1751 funtp 5249 foimacnv 5458 respreima 5622 fpr 5676 dmtpos 6233 ixpsnf1o 6711 ssdomg 6753 exmidfodomrlemim 7167 archnqq 7368 recexgt0sr 7724 ige2m2fzo 10143 climeu 11248 algcvgblem 11992 qredeu 12040 qnumdencoprm 12136 qeqnumdivden 12137 eltg3i 12811 topbas 12822 neipsm 12909 lmbrf 12970 exmidsbthrlem 14016 |
Copyright terms: Public domain | W3C validator |