![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jctr 315 equvini 1769 funtp 5307 foimacnv 5518 respreima 5686 fpr 5740 dmtpos 6309 ixpsnf1o 6790 ssdomg 6832 exmidfodomrlemim 7261 archnqq 7477 recexgt0sr 7833 ige2m2fzo 10265 climeu 11439 algcvgblem 12187 qredeu 12235 qnumdencoprm 12331 qeqnumdivden 12332 eltg3i 14224 topbas 14235 neipsm 14322 lmbrf 14383 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |