| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1782 funtp 5341 foimacnv 5557 respreima 5726 fpr 5784 dmtpos 6360 ixpsnf1o 6841 ssdomg 6888 exmidfodomrlemim 7335 archnqq 7560 recexgt0sr 7916 ige2m2fzo 10359 swrdlsw 11155 climeu 11692 algcvgblem 12456 qredeu 12504 qnumdencoprm 12600 qeqnumdivden 12601 eltg3i 14613 topbas 14624 neipsm 14711 lmbrf 14772 2lgslem1a 15650 exmidsbthrlem 16133 |
| Copyright terms: Public domain | W3C validator |