ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 306 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1772  funtp  5312  foimacnv  5525  respreima  5693  fpr  5747  dmtpos  6323  ixpsnf1o  6804  ssdomg  6846  exmidfodomrlemim  7282  archnqq  7503  recexgt0sr  7859  ige2m2fzo  10293  climeu  11480  algcvgblem  12244  qredeu  12292  qnumdencoprm  12388  qeqnumdivden  12389  eltg3i  14400  topbas  14411  neipsm  14498  lmbrf  14559  2lgslem1a  15437  exmidsbthrlem  15779
  Copyright terms: Public domain W3C validator