ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 306 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1772  funtp  5311  foimacnv  5522  respreima  5690  fpr  5744  dmtpos  6314  ixpsnf1o  6795  ssdomg  6837  exmidfodomrlemim  7268  archnqq  7484  recexgt0sr  7840  ige2m2fzo  10274  climeu  11461  algcvgblem  12217  qredeu  12265  qnumdencoprm  12361  qeqnumdivden  12362  eltg3i  14292  topbas  14303  neipsm  14390  lmbrf  14451  2lgslem1a  15329  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator