ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 306 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1804  funtp  5373  foimacnv  5589  respreima  5762  fpr  5820  dmtpos  6400  ixpsnf1o  6881  ssdomg  6928  exmidfodomrlemim  7375  archnqq  7600  recexgt0sr  7956  ige2m2fzo  10399  swrdlsw  11196  climeu  11802  algcvgblem  12566  qredeu  12614  qnumdencoprm  12710  qeqnumdivden  12711  eltg3i  14724  topbas  14735  neipsm  14822  lmbrf  14883  2lgslem1a  15761  usgredg2v  16016  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator