![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jctr 315 equvini 1769 funtp 5308 foimacnv 5519 respreima 5687 fpr 5741 dmtpos 6311 ixpsnf1o 6792 ssdomg 6834 exmidfodomrlemim 7263 archnqq 7479 recexgt0sr 7835 ige2m2fzo 10268 climeu 11442 algcvgblem 12190 qredeu 12238 qnumdencoprm 12334 qeqnumdivden 12335 eltg3i 14235 topbas 14246 neipsm 14333 lmbrf 14394 2lgslem1a 15245 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |