ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 306 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1769  funtp  5308  foimacnv  5519  respreima  5687  fpr  5741  dmtpos  6311  ixpsnf1o  6792  ssdomg  6834  exmidfodomrlemim  7263  archnqq  7479  recexgt0sr  7835  ige2m2fzo  10268  climeu  11442  algcvgblem  12190  qredeu  12238  qnumdencoprm  12334  qeqnumdivden  12335  eltg3i  14235  topbas  14246  neipsm  14333  lmbrf  14394  2lgslem1a  15245  exmidsbthrlem  15582
  Copyright terms: Public domain W3C validator