| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1780 funtp 5326 foimacnv 5539 respreima 5707 fpr 5765 dmtpos 6341 ixpsnf1o 6822 ssdomg 6869 exmidfodomrlemim 7308 archnqq 7529 recexgt0sr 7885 ige2m2fzo 10325 climeu 11549 algcvgblem 12313 qredeu 12361 qnumdencoprm 12457 qeqnumdivden 12458 eltg3i 14470 topbas 14481 neipsm 14568 lmbrf 14629 2lgslem1a 15507 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |