| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1780 funtp 5326 foimacnv 5539 respreima 5707 fpr 5765 dmtpos 6341 ixpsnf1o 6822 ssdomg 6869 exmidfodomrlemim 7308 archnqq 7529 recexgt0sr 7885 ige2m2fzo 10325 climeu 11578 algcvgblem 12342 qredeu 12390 qnumdencoprm 12486 qeqnumdivden 12487 eltg3i 14499 topbas 14510 neipsm 14597 lmbrf 14658 2lgslem1a 15536 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |