| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1772 funtp 5312 foimacnv 5523 respreima 5691 fpr 5745 dmtpos 6315 ixpsnf1o 6796 ssdomg 6838 exmidfodomrlemim 7270 archnqq 7486 recexgt0sr 7842 ige2m2fzo 10276 climeu 11463 algcvgblem 12227 qredeu 12275 qnumdencoprm 12371 qeqnumdivden 12372 eltg3i 14302 topbas 14313 neipsm 14400 lmbrf 14461 2lgslem1a 15339 exmidsbthrlem 15676 |
| Copyright terms: Public domain | W3C validator |