| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | GIF version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1772 funtp 5312 foimacnv 5525 respreima 5693 fpr 5747 dmtpos 6323 ixpsnf1o 6804 ssdomg 6846 exmidfodomrlemim 7282 archnqq 7503 recexgt0sr 7859 ige2m2fzo 10293 climeu 11480 algcvgblem 12244 qredeu 12292 qnumdencoprm 12388 qeqnumdivden 12389 eltg3i 14400 topbas 14411 neipsm 14498 lmbrf 14559 2lgslem1a 15437 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |