![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jctil.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jctr 315 equvini 1758 funtp 5271 foimacnv 5481 respreima 5646 fpr 5700 dmtpos 6259 ixpsnf1o 6738 ssdomg 6780 exmidfodomrlemim 7202 archnqq 7418 recexgt0sr 7774 ige2m2fzo 10200 climeu 11306 algcvgblem 12051 qredeu 12099 qnumdencoprm 12195 qeqnumdivden 12196 eltg3i 13595 topbas 13606 neipsm 13693 lmbrf 13754 exmidsbthrlem 14809 |
Copyright terms: Public domain | W3C validator |