ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir GIF version

Theorem jctir 307
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (𝜑𝜓)
jctil.2 𝜒
Assertion
Ref Expression
jctir (𝜑 → (𝜓𝜒))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (𝜑𝜓)
2 jctil.2 . . 3 𝜒
32a1i 9 . 2 (𝜑𝜒)
41, 3jca 301 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 107
This theorem is referenced by:  jctr  309  equvini  1695  funtp  5101  foimacnv  5306  respreima  5466  fpr  5518  dmtpos  6059  ixpsnf1o  6533  ssdomg  6575  exmidfodomrlemim  6924  archnqq  7073  recexgt0sr  7416  ige2m2fzo  9758  climeu  10855  algcvgblem  11474  qredeu  11522  qnumdencoprm  11614  qeqnumdivden  11615  eltg3i  11924  topbas  11935  neipsm  12022  lmbrf  12082  exmidsbthrlem  12633
  Copyright terms: Public domain W3C validator