Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undifss | GIF version |
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
undifss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3248 | . . . 4 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
2 | 1 | jctr 313 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵)) |
3 | unss 3296 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) | |
4 | 2, 3 | sylib 121 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
5 | ssun1 3285 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) | |
6 | sstr 3150 | . . 3 ⊢ ((𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) ∧ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
7 | 5, 6 | mpan 421 | . 2 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 → 𝐴 ⊆ 𝐵) |
8 | 4, 7 | impbii 125 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∖ cdif 3113 ∪ cun 3114 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: difsnss 3719 exmidundif 4185 exmidundifim 4186 undifdcss 6888 |
Copyright terms: Public domain | W3C validator |