ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifss GIF version

Theorem undifss 3495
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undifss (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)

Proof of Theorem undifss
StepHypRef Expression
1 difss 3253 . . . 4 (𝐵𝐴) ⊆ 𝐵
21jctr 313 . . 3 (𝐴𝐵 → (𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵))
3 unss 3301 . . 3 ((𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
42, 3sylib 121 . 2 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
5 ssun1 3290 . . 3 𝐴 ⊆ (𝐴 ∪ (𝐵𝐴))
6 sstr 3155 . . 3 ((𝐴 ⊆ (𝐴 ∪ (𝐵𝐴)) ∧ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵) → 𝐴𝐵)
75, 6mpan 422 . 2 ((𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵𝐴𝐵)
84, 7impbii 125 1 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  cdif 3118  cun 3119  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  difsnss  3726  exmidundif  4192  exmidundifim  4193  undifdcss  6900
  Copyright terms: Public domain W3C validator