| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifss | GIF version | ||
| Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.) |
| Ref | Expression |
|---|---|
| undifss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3289 | . . . 4 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
| 2 | 1 | jctr 315 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵)) |
| 3 | unss 3337 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) | |
| 4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
| 5 | ssun1 3326 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) | |
| 6 | sstr 3191 | . . 3 ⊢ ((𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) ∧ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | mpan 424 | . 2 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 → 𝐴 ⊆ 𝐵) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∖ cdif 3154 ∪ cun 3155 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difsnss 3768 exmidundif 4239 exmidundifim 4240 undifdcss 6984 |
| Copyright terms: Public domain | W3C validator |