Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undifss | GIF version |
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
undifss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3253 | . . . 4 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
2 | 1 | jctr 313 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵)) |
3 | unss 3301 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) | |
4 | 2, 3 | sylib 121 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
5 | ssun1 3290 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) | |
6 | sstr 3155 | . . 3 ⊢ ((𝐴 ⊆ (𝐴 ∪ (𝐵 ∖ 𝐴)) ∧ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
7 | 5, 6 | mpan 422 | . 2 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 → 𝐴 ⊆ 𝐵) |
8 | 4, 7 | impbii 125 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∖ cdif 3118 ∪ cun 3119 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: difsnss 3726 exmidundif 4192 exmidundifim 4193 undifdcss 6900 |
Copyright terms: Public domain | W3C validator |