ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifss GIF version

Theorem undifss 3527
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undifss (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)

Proof of Theorem undifss
StepHypRef Expression
1 difss 3285 . . . 4 (𝐵𝐴) ⊆ 𝐵
21jctr 315 . . 3 (𝐴𝐵 → (𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵))
3 unss 3333 . . 3 ((𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
42, 3sylib 122 . 2 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
5 ssun1 3322 . . 3 𝐴 ⊆ (𝐴 ∪ (𝐵𝐴))
6 sstr 3187 . . 3 ((𝐴 ⊆ (𝐴 ∪ (𝐵𝐴)) ∧ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵) → 𝐴𝐵)
75, 6mpan 424 . 2 ((𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵𝐴𝐵)
84, 7impbii 126 1 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  cdif 3150  cun 3151  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  difsnss  3764  exmidundif  4235  exmidundifim  4236  undifdcss  6979
  Copyright terms: Public domain W3C validator