ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifss GIF version

Theorem undifss 3489
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undifss (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)

Proof of Theorem undifss
StepHypRef Expression
1 difss 3248 . . . 4 (𝐵𝐴) ⊆ 𝐵
21jctr 313 . . 3 (𝐴𝐵 → (𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵))
3 unss 3296 . . 3 ((𝐴𝐵 ∧ (𝐵𝐴) ⊆ 𝐵) ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
42, 3sylib 121 . 2 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
5 ssun1 3285 . . 3 𝐴 ⊆ (𝐴 ∪ (𝐵𝐴))
6 sstr 3150 . . 3 ((𝐴 ⊆ (𝐴 ∪ (𝐵𝐴)) ∧ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵) → 𝐴𝐵)
75, 6mpan 421 . 2 ((𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵𝐴𝐵)
84, 7impbii 125 1 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  cdif 3113  cun 3114  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  difsnss  3719  exmidundif  4185  exmidundifim  4186  undifdcss  6888
  Copyright terms: Public domain W3C validator