ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq12 GIF version

Theorem mpoeq12 5896
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpoeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem mpoeq12
StepHypRef Expression
1 eqid 2164 . . . . 5 𝐸 = 𝐸
21rgenw 2519 . . . 4 𝑦𝐵 𝐸 = 𝐸
32jctr 313 . . 3 (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
43ralrimivw 2538 . 2 (𝐵 = 𝐷 → ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
5 mpoeq123 5895 . 2 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸)) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
64, 5sylan2 284 1 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wral 2442  cmpo 5841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-11 1493  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-oprab 5843  df-mpo 5844
This theorem is referenced by:  seqeq1  10377  txvalex  12852  txval  12853
  Copyright terms: Public domain W3C validator