ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brprcneu GIF version

Theorem brprcneu 5592
Description: If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem brprcneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dtruex 4625 . . . . . . . . 9 𝑦 ¬ 𝑦 = 𝑥
2 equcom 1730 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
32notbii 670 . . . . . . . . . 10 𝑥 = 𝑦 ↔ ¬ 𝑦 = 𝑥)
43exbii 1629 . . . . . . . . 9 (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ∃𝑦 ¬ 𝑦 = 𝑥)
51, 4mpbir 146 . . . . . . . 8 𝑦 ¬ 𝑥 = 𝑦
65jctr 315 . . . . . . 7 (∅ ∈ 𝐹 → (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
7 19.42v 1931 . . . . . . 7 (∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
86, 7sylibr 134 . . . . . 6 (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))
9 opprc1 3855 . . . . . . . 8 𝐴 ∈ V → ⟨𝐴, 𝑥⟩ = ∅)
109eleq1d 2276 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
11 opprc1 3855 . . . . . . . . . . . 12 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
1211eleq1d 2276 . . . . . . . . . . 11 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
1310, 12anbi12d 473 . . . . . . . . . 10 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹)))
14 anidm 396 . . . . . . . . . 10 ((∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹) ↔ ∅ ∈ 𝐹)
1513, 14bitrdi 196 . . . . . . . . 9 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ ∅ ∈ 𝐹))
1615anbi1d 465 . . . . . . . 8 𝐴 ∈ V → (((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1716exbidv 1849 . . . . . . 7 𝐴 ∈ V → (∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1810, 17imbi12d 234 . . . . . 6 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) ↔ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))))
198, 18mpbiri 168 . . . . 5 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)))
20 df-br 4060 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21 df-br 4060 . . . . . . . 8 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
2220, 21anbi12i 460 . . . . . . 7 ((𝐴𝐹𝑥𝐴𝐹𝑦) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2322anbi1i 458 . . . . . 6 (((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2423exbii 1629 . . . . 5 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2519, 20, 243imtr4g 205 . . . 4 𝐴 ∈ V → (𝐴𝐹𝑥 → ∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
2625eximdv 1904 . . 3 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
27 exanaliim 1671 . . . . . 6 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
2827eximi 1624 . . . . 5 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
29 exnalim 1670 . . . . 5 (∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3028, 29syl 14 . . . 4 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
31 breq2 4063 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
3231mo4 2117 . . . . 5 (∃*𝑥 𝐴𝐹𝑥 ↔ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3332notbii 670 . . . 4 (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3430, 33sylibr 134 . . 3 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∃*𝑥 𝐴𝐹𝑥)
3526, 34syl6 33 . 2 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
36 eu5 2103 . . . 4 (∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3736notbii 670 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
38 imnan 692 . . 3 ((∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥) ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3937, 38bitr4i 187 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
4035, 39sylibr 134 1 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1371  wex 1516  ∃!weu 2055  ∃*wmo 2056  wcel 2178  Vcvv 2776  c0 3468  cop 3646   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  fvprc  5593
  Copyright terms: Public domain W3C validator