ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brprcneu GIF version

Theorem brprcneu 5520
Description: If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem brprcneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dtruex 4570 . . . . . . . . 9 𝑦 ¬ 𝑦 = 𝑥
2 equcom 1716 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
32notbii 669 . . . . . . . . . 10 𝑥 = 𝑦 ↔ ¬ 𝑦 = 𝑥)
43exbii 1615 . . . . . . . . 9 (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ∃𝑦 ¬ 𝑦 = 𝑥)
51, 4mpbir 146 . . . . . . . 8 𝑦 ¬ 𝑥 = 𝑦
65jctr 315 . . . . . . 7 (∅ ∈ 𝐹 → (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
7 19.42v 1916 . . . . . . 7 (∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
86, 7sylibr 134 . . . . . 6 (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))
9 opprc1 3812 . . . . . . . 8 𝐴 ∈ V → ⟨𝐴, 𝑥⟩ = ∅)
109eleq1d 2256 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
11 opprc1 3812 . . . . . . . . . . . 12 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
1211eleq1d 2256 . . . . . . . . . . 11 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
1310, 12anbi12d 473 . . . . . . . . . 10 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹)))
14 anidm 396 . . . . . . . . . 10 ((∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹) ↔ ∅ ∈ 𝐹)
1513, 14bitrdi 196 . . . . . . . . 9 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ ∅ ∈ 𝐹))
1615anbi1d 465 . . . . . . . 8 𝐴 ∈ V → (((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1716exbidv 1835 . . . . . . 7 𝐴 ∈ V → (∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1810, 17imbi12d 234 . . . . . 6 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) ↔ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))))
198, 18mpbiri 168 . . . . 5 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)))
20 df-br 4016 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21 df-br 4016 . . . . . . . 8 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
2220, 21anbi12i 460 . . . . . . 7 ((𝐴𝐹𝑥𝐴𝐹𝑦) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2322anbi1i 458 . . . . . 6 (((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2423exbii 1615 . . . . 5 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2519, 20, 243imtr4g 205 . . . 4 𝐴 ∈ V → (𝐴𝐹𝑥 → ∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
2625eximdv 1890 . . 3 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
27 exanaliim 1657 . . . . . 6 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
2827eximi 1610 . . . . 5 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
29 exnalim 1656 . . . . 5 (∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3028, 29syl 14 . . . 4 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
31 breq2 4019 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
3231mo4 2097 . . . . 5 (∃*𝑥 𝐴𝐹𝑥 ↔ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3332notbii 669 . . . 4 (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3430, 33sylibr 134 . . 3 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∃*𝑥 𝐴𝐹𝑥)
3526, 34syl6 33 . 2 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
36 eu5 2083 . . . 4 (∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3736notbii 669 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
38 imnan 691 . . 3 ((∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥) ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3937, 38bitr4i 187 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
4035, 39sylibr 134 1 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1361  wex 1502  ∃!weu 2036  ∃*wmo 2037  wcel 2158  Vcvv 2749  c0 3434  cop 3607   class class class wbr 4015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016
This theorem is referenced by:  fvprc  5521
  Copyright terms: Public domain W3C validator