| Step | Hyp | Ref
| Expression |
| 1 | | df-frec 6449 |
. . . 4
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
| 2 | | freccllem.g |
. . . . 5
⊢ 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) |
| 3 | 2 | reseq1i 4942 |
. . . 4
⊢ (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
| 4 | 1, 3 | eqtr4i 2220 |
. . 3
⊢
frec(𝐹, 𝐴) = (𝐺 ↾ ω) |
| 5 | 4 | fveq1i 5559 |
. 2
⊢
(frec(𝐹, 𝐴)‘𝐵) = ((𝐺 ↾ ω)‘𝐵) |
| 6 | | freccl.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ω) |
| 7 | | fvres 5582 |
. . . 4
⊢ (𝐵 ∈ ω → ((𝐺 ↾ ω)‘𝐵) = (𝐺‘𝐵)) |
| 8 | 6, 7 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐺 ↾ ω)‘𝐵) = (𝐺‘𝐵)) |
| 9 | | funmpt 5296 |
. . . . 5
⊢ Fun
(𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 10 | 9 | a1i 9 |
. . . 4
⊢ (𝜑 → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) |
| 11 | | ordom 4643 |
. . . . 5
⊢ Ord
ω |
| 12 | 11 | a1i 9 |
. . . 4
⊢ (𝜑 → Ord
ω) |
| 13 | | vex 2766 |
. . . . . 6
⊢ 𝑓 ∈ V |
| 14 | | simp2 1000 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑦 ∈ ω) |
| 15 | | simp3 1001 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑓:𝑦⟶𝑆) |
| 16 | | freccl.cl |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) |
| 17 | 16 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆) |
| 18 | 17 | 3ad2ant1 1020 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆) |
| 19 | | freccl.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 20 | 19 | 3ad2ant1 1020 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝐴 ∈ 𝑆) |
| 21 | 14, 15, 18, 20 | frecabcl 6457 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) |
| 22 | | dmeq 4866 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓) |
| 23 | 22 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚)) |
| 24 | | fveq1 5557 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → (𝑔‘𝑚) = (𝑓‘𝑚)) |
| 25 | 24 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(𝑓‘𝑚))) |
| 26 | 25 | eleq2d 2266 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓‘𝑚)))) |
| 27 | 23, 26 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) |
| 28 | 27 | rexbidv 2498 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) |
| 29 | 22 | eqeq1d 2205 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅)) |
| 30 | 29 | anbi1d 465 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 31 | 28, 30 | orbi12d 794 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 32 | 31 | abbidv 2314 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 33 | | eqid 2196 |
. . . . . . 7
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 34 | 32, 33 | fvmptg 5637 |
. . . . . 6
⊢ ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 35 | 13, 21, 34 | sylancr 414 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 36 | 35, 21 | eqeltrd 2273 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) ∈ 𝑆) |
| 37 | | limom 4650 |
. . . . . . 7
⊢ Lim
ω |
| 38 | | limuni 4431 |
. . . . . . 7
⊢ (Lim
ω → ω = ∪ ω) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . 6
⊢ ω =
∪ ω |
| 40 | 39 | eleq2i 2263 |
. . . . 5
⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∪ ω) |
| 41 | | peano2 4631 |
. . . . . 6
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 42 | 41 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → suc 𝑦 ∈
ω) |
| 43 | 40, 42 | sylan2br 288 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ω)
→ suc 𝑦 ∈
ω) |
| 44 | 6, 39 | eleqtrdi 2289 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ∪
ω) |
| 45 | 2, 10, 12, 36, 43, 44 | tfrcl 6422 |
. . 3
⊢ (𝜑 → (𝐺‘𝐵) ∈ 𝑆) |
| 46 | 8, 45 | eqeltrd 2273 |
. 2
⊢ (𝜑 → ((𝐺 ↾ ω)‘𝐵) ∈ 𝑆) |
| 47 | 5, 46 | eqeltrid 2283 |
1
⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |