Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccllem GIF version

Theorem freccllem 6299
 Description: Lemma for freccl 6300. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a (𝜑𝐴𝑆)
freccl.cl ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
freccl.b (𝜑𝐵 ∈ ω)
freccllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
freccllem (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑧,𝐴,𝑚,𝑥   𝑥,𝐵   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹   𝑆,𝑚,𝑥,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐵(𝑧,𝑔,𝑚)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem freccllem
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6288 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 freccllem.g . . . . 5 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
32reseq1i 4815 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
41, 3eqtr4i 2163 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
54fveq1i 5422 . 2 (frec(𝐹, 𝐴)‘𝐵) = ((𝐺 ↾ ω)‘𝐵)
6 freccl.b . . . 4 (𝜑𝐵 ∈ ω)
7 fvres 5445 . . . 4 (𝐵 ∈ ω → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
86, 7syl 14 . . 3 (𝜑 → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
9 funmpt 5161 . . . . 5 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
109a1i 9 . . . 4 (𝜑 → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
11 ordom 4520 . . . . 5 Ord ω
1211a1i 9 . . . 4 (𝜑 → Ord ω)
13 vex 2689 . . . . . 6 𝑓 ∈ V
14 simp2 982 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
15 simp3 983 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
16 freccl.cl . . . . . . . . 9 ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
1716ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
18173ad2ant1 1002 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
19 freccl.a . . . . . . . 8 (𝜑𝐴𝑆)
20193ad2ant1 1002 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2114, 15, 18, 20frecabcl 6296 . . . . . 6 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
22 dmeq 4739 . . . . . . . . . . . 12 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
2322eqeq1d 2148 . . . . . . . . . . 11 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
24 fveq1 5420 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
2524fveq2d 5425 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2625eleq2d 2209 . . . . . . . . . . 11 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2723, 26anbi12d 464 . . . . . . . . . 10 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2827rexbidv 2438 . . . . . . . . 9 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2922eqeq1d 2148 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3029anbi1d 460 . . . . . . . . 9 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3128, 30orbi12d 782 . . . . . . . 8 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3231abbidv 2257 . . . . . . 7 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
33 eqid 2139 . . . . . . 7 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3432, 33fvmptg 5497 . . . . . 6 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3513, 21, 34sylancr 410 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3635, 21eqeltrd 2216 . . . 4 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
37 limom 4527 . . . . . . 7 Lim ω
38 limuni 4318 . . . . . . 7 (Lim ω → ω = ω)
3937, 38ax-mp 5 . . . . . 6 ω = ω
4039eleq2i 2206 . . . . 5 (𝑦 ∈ ω ↔ 𝑦 ω)
41 peano2 4509 . . . . . 6 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4241adantl 275 . . . . 5 ((𝜑𝑦 ∈ ω) → suc 𝑦 ∈ ω)
4340, 42sylan2br 286 . . . 4 ((𝜑𝑦 ω) → suc 𝑦 ∈ ω)
446, 39eleqtrdi 2232 . . . 4 (𝜑𝐵 ω)
452, 10, 12, 36, 43, 44tfrcl 6261 . . 3 (𝜑 → (𝐺𝐵) ∈ 𝑆)
468, 45eqeltrd 2216 . 2 (𝜑 → ((𝐺 ↾ ω)‘𝐵) ∈ 𝑆)
475, 46eqeltrid 2226 1 (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 697   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  {cab 2125  ∀wral 2416  ∃wrex 2417  Vcvv 2686  ∅c0 3363  ∪ cuni 3736   ↦ cmpt 3989  Ord word 4284  Lim wlim 4286  suc csuc 4287  ωcom 4504  dom cdm 4539   ↾ cres 4541  Fun wfun 5117  ⟶wf 5119  ‘cfv 5123  recscrecs 6201  freccfrec 6287 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202  df-frec 6288 This theorem is referenced by:  freccl  6300
 Copyright terms: Public domain W3C validator