ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccllem GIF version

Theorem freccllem 6538
Description: Lemma for freccl 6539. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a (𝜑𝐴𝑆)
freccl.cl ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
freccl.b (𝜑𝐵 ∈ ω)
freccllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
freccllem (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑧,𝐴,𝑚,𝑥   𝑥,𝐵   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹   𝑆,𝑚,𝑥,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐵(𝑧,𝑔,𝑚)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem freccllem
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6527 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 freccllem.g . . . . 5 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
32reseq1i 4997 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
41, 3eqtr4i 2253 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
54fveq1i 5624 . 2 (frec(𝐹, 𝐴)‘𝐵) = ((𝐺 ↾ ω)‘𝐵)
6 freccl.b . . . 4 (𝜑𝐵 ∈ ω)
7 fvres 5647 . . . 4 (𝐵 ∈ ω → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
86, 7syl 14 . . 3 (𝜑 → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
9 funmpt 5352 . . . . 5 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
109a1i 9 . . . 4 (𝜑 → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
11 ordom 4696 . . . . 5 Ord ω
1211a1i 9 . . . 4 (𝜑 → Ord ω)
13 vex 2802 . . . . . 6 𝑓 ∈ V
14 simp2 1022 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
15 simp3 1023 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
16 freccl.cl . . . . . . . . 9 ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
1716ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
18173ad2ant1 1042 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
19 freccl.a . . . . . . . 8 (𝜑𝐴𝑆)
20193ad2ant1 1042 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2114, 15, 18, 20frecabcl 6535 . . . . . 6 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
22 dmeq 4920 . . . . . . . . . . . 12 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
2322eqeq1d 2238 . . . . . . . . . . 11 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
24 fveq1 5622 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
2524fveq2d 5627 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2625eleq2d 2299 . . . . . . . . . . 11 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2723, 26anbi12d 473 . . . . . . . . . 10 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2827rexbidv 2531 . . . . . . . . 9 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2922eqeq1d 2238 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3029anbi1d 465 . . . . . . . . 9 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3128, 30orbi12d 798 . . . . . . . 8 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3231abbidv 2347 . . . . . . 7 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
33 eqid 2229 . . . . . . 7 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3432, 33fvmptg 5703 . . . . . 6 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3513, 21, 34sylancr 414 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3635, 21eqeltrd 2306 . . . 4 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
37 limom 4703 . . . . . . 7 Lim ω
38 limuni 4484 . . . . . . 7 (Lim ω → ω = ω)
3937, 38ax-mp 5 . . . . . 6 ω = ω
4039eleq2i 2296 . . . . 5 (𝑦 ∈ ω ↔ 𝑦 ω)
41 peano2 4684 . . . . . 6 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4241adantl 277 . . . . 5 ((𝜑𝑦 ∈ ω) → suc 𝑦 ∈ ω)
4340, 42sylan2br 288 . . . 4 ((𝜑𝑦 ω) → suc 𝑦 ∈ ω)
446, 39eleqtrdi 2322 . . . 4 (𝜑𝐵 ω)
452, 10, 12, 36, 43, 44tfrcl 6500 . . 3 (𝜑 → (𝐺𝐵) ∈ 𝑆)
468, 45eqeltrd 2306 . 2 (𝜑 → ((𝐺 ↾ ω)‘𝐵) ∈ 𝑆)
475, 46eqeltrid 2316 1 (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  c0 3491   cuni 3887  cmpt 4144  Ord word 4450  Lim wlim 4452  suc csuc 4453  ωcom 4679  dom cdm 4716  cres 4718  Fun wfun 5308  wf 5310  cfv 5314  recscrecs 6440  freccfrec 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-recs 6441  df-frec 6527
This theorem is referenced by:  freccl  6539
  Copyright terms: Public domain W3C validator