ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccllem GIF version

Theorem freccllem 6229
Description: Lemma for freccl 6230. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a (𝜑𝐴𝑆)
freccl.cl ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
freccl.b (𝜑𝐵 ∈ ω)
freccllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
freccllem (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑧,𝐴,𝑚,𝑥   𝑥,𝐵   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹   𝑆,𝑚,𝑥,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐵(𝑧,𝑔,𝑚)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem freccllem
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6218 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 freccllem.g . . . . 5 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
32reseq1i 4751 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
41, 3eqtr4i 2123 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
54fveq1i 5354 . 2 (frec(𝐹, 𝐴)‘𝐵) = ((𝐺 ↾ ω)‘𝐵)
6 freccl.b . . . 4 (𝜑𝐵 ∈ ω)
7 fvres 5377 . . . 4 (𝐵 ∈ ω → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
86, 7syl 14 . . 3 (𝜑 → ((𝐺 ↾ ω)‘𝐵) = (𝐺𝐵))
9 funmpt 5097 . . . . 5 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
109a1i 9 . . . 4 (𝜑 → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
11 ordom 4458 . . . . 5 Ord ω
1211a1i 9 . . . 4 (𝜑 → Ord ω)
13 vex 2644 . . . . . 6 𝑓 ∈ V
14 simp2 950 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
15 simp3 951 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
16 freccl.cl . . . . . . . . 9 ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
1716ralrimiva 2464 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
18173ad2ant1 970 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
19 freccl.a . . . . . . . 8 (𝜑𝐴𝑆)
20193ad2ant1 970 . . . . . . 7 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2114, 15, 18, 20frecabcl 6226 . . . . . 6 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
22 dmeq 4677 . . . . . . . . . . . 12 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
2322eqeq1d 2108 . . . . . . . . . . 11 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
24 fveq1 5352 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
2524fveq2d 5357 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2625eleq2d 2169 . . . . . . . . . . 11 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2723, 26anbi12d 460 . . . . . . . . . 10 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2827rexbidv 2397 . . . . . . . . 9 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2922eqeq1d 2108 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3029anbi1d 456 . . . . . . . . 9 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3128, 30orbi12d 748 . . . . . . . 8 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3231abbidv 2217 . . . . . . 7 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
33 eqid 2100 . . . . . . 7 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3432, 33fvmptg 5429 . . . . . 6 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3513, 21, 34sylancr 408 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3635, 21eqeltrd 2176 . . . 4 ((𝜑𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
37 limom 4465 . . . . . . 7 Lim ω
38 limuni 4256 . . . . . . 7 (Lim ω → ω = ω)
3937, 38ax-mp 7 . . . . . 6 ω = ω
4039eleq2i 2166 . . . . 5 (𝑦 ∈ ω ↔ 𝑦 ω)
41 peano2 4447 . . . . . 6 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4241adantl 273 . . . . 5 ((𝜑𝑦 ∈ ω) → suc 𝑦 ∈ ω)
4340, 42sylan2br 284 . . . 4 ((𝜑𝑦 ω) → suc 𝑦 ∈ ω)
446, 39syl6eleq 2192 . . . 4 (𝜑𝐵 ω)
452, 10, 12, 36, 43, 44tfrcl 6191 . . 3 (𝜑 → (𝐺𝐵) ∈ 𝑆)
468, 45eqeltrd 2176 . 2 (𝜑 → ((𝐺 ↾ ω)‘𝐵) ∈ 𝑆)
475, 46syl5eqel 2186 1 (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 670  w3a 930   = wceq 1299  wcel 1448  {cab 2086  wral 2375  wrex 2376  Vcvv 2641  c0 3310   cuni 3683  cmpt 3929  Ord word 4222  Lim wlim 4224  suc csuc 4225  ωcom 4442  dom cdm 4477  cres 4479  Fun wfun 5053  wf 5055  cfv 5059  recscrecs 6131  freccfrec 6217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132  df-frec 6218
This theorem is referenced by:  freccl  6230
  Copyright terms: Public domain W3C validator