ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem GIF version

Theorem frecfcllem 6383
Description: Lemma for frecfcl 6384. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
frecfcllem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem frecfcllem
Dummy variables 𝑓 𝑦 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
2 funmpt 5236 . . . . . . 7 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4 ordom 4591 . . . . . . 7 Ord ω
54a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Ord ω)
6 vex 2733 . . . . . . . 8 𝑓 ∈ V
7 simp2 993 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
8 simp3 994 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
9 simp1ll 1055 . . . . . . . . . 10 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
10 fveq2 5496 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
1110eleq1d 2239 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
1211cbvralv 2696 . . . . . . . . . 10 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
139, 12sylib 121 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
14 simp1lr 1056 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
157, 8, 13, 14frecabcl 6378 . . . . . . . 8 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
16 dmeq 4811 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
1716eqeq1d 2179 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
18 fveq1 5495 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
1918fveq2d 5500 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2019eleq2d 2240 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2117, 20anbi12d 470 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2221rexbidv 2471 . . . . . . . . . . 11 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2316eqeq1d 2179 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
2423anbi1d 462 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
2522, 24orbi12d 788 . . . . . . . . . 10 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
2625abbidv 2288 . . . . . . . . 9 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
27 eqid 2170 . . . . . . . . 9 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
2826, 27fvmptg 5572 . . . . . . . 8 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
296, 15, 28sylancr 412 . . . . . . 7 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3029, 15eqeltrd 2247 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
31 limom 4598 . . . . . . . . . 10 Lim ω
32 limuni 4381 . . . . . . . . . 10 (Lim ω → ω = ω)
3331, 32ax-mp 5 . . . . . . . . 9 ω = ω
3433eleq2i 2237 . . . . . . . 8 (𝑦 ∈ ω ↔ 𝑦 ω)
35 peano2 4579 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
3634, 35sylbir 134 . . . . . . 7 (𝑦 ω → suc 𝑦 ∈ ω)
3736adantl 275 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
3833eleq2i 2237 . . . . . . . 8 (𝑘 ∈ ω ↔ 𝑘 ω)
3938biimpi 119 . . . . . . 7 (𝑘 ∈ ω → 𝑘 ω)
4039adantl 275 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ω)
411, 3, 5, 30, 37, 40tfrcldm 6342 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom 𝐺)
421, 3, 5, 30, 37, 40tfrcl 6343 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝑆)
4341, 42jca 304 . . . 4 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
4443ralrimiva 2543 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
45 tfrfun 6299 . . . . 5 Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
461funeqi 5219 . . . . 5 (Fun 𝐺 ↔ Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
4745, 46mpbir 145 . . . 4 Fun 𝐺
48 ffvresb 5659 . . . 4 (Fun 𝐺 → ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆)))
4947, 48ax-mp 5 . . 3 ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
5044, 49sylibr 133 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (𝐺 ↾ ω):ω⟶𝑆)
51 df-frec 6370 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
521reseq1i 4887 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
5351, 52eqtr4i 2194 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
5453feq1i 5340 . 2 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (𝐺 ↾ ω):ω⟶𝑆)
5550, 54sylibr 133 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  Vcvv 2730  c0 3414   cuni 3796  cmpt 4050  Ord word 4347  Lim wlim 4349  suc csuc 4350  ωcom 4574  dom cdm 4611  cres 4613  Fun wfun 5192  wf 5194  cfv 5198  recscrecs 6283  freccfrec 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-recs 6284  df-frec 6370
This theorem is referenced by:  frecfcl  6384
  Copyright terms: Public domain W3C validator