ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem GIF version

Theorem frecfcllem 6503
Description: Lemma for frecfcl 6504. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
frecfcllem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem frecfcllem
Dummy variables 𝑓 𝑦 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
2 funmpt 5318 . . . . . . 7 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4 ordom 4663 . . . . . . 7 Ord ω
54a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Ord ω)
6 vex 2776 . . . . . . . 8 𝑓 ∈ V
7 simp2 1001 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
8 simp3 1002 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
9 simp1ll 1063 . . . . . . . . . 10 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
10 fveq2 5589 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
1110eleq1d 2275 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
1211cbvralv 2739 . . . . . . . . . 10 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
139, 12sylib 122 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
14 simp1lr 1064 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
157, 8, 13, 14frecabcl 6498 . . . . . . . 8 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
16 dmeq 4887 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
1716eqeq1d 2215 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
18 fveq1 5588 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
1918fveq2d 5593 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2019eleq2d 2276 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2117, 20anbi12d 473 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2221rexbidv 2508 . . . . . . . . . . 11 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2316eqeq1d 2215 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
2423anbi1d 465 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
2522, 24orbi12d 795 . . . . . . . . . 10 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
2625abbidv 2324 . . . . . . . . 9 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
27 eqid 2206 . . . . . . . . 9 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
2826, 27fvmptg 5668 . . . . . . . 8 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
296, 15, 28sylancr 414 . . . . . . 7 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3029, 15eqeltrd 2283 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
31 limom 4670 . . . . . . . . . 10 Lim ω
32 limuni 4451 . . . . . . . . . 10 (Lim ω → ω = ω)
3331, 32ax-mp 5 . . . . . . . . 9 ω = ω
3433eleq2i 2273 . . . . . . . 8 (𝑦 ∈ ω ↔ 𝑦 ω)
35 peano2 4651 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
3634, 35sylbir 135 . . . . . . 7 (𝑦 ω → suc 𝑦 ∈ ω)
3736adantl 277 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
3833eleq2i 2273 . . . . . . . 8 (𝑘 ∈ ω ↔ 𝑘 ω)
3938biimpi 120 . . . . . . 7 (𝑘 ∈ ω → 𝑘 ω)
4039adantl 277 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ω)
411, 3, 5, 30, 37, 40tfrcldm 6462 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom 𝐺)
421, 3, 5, 30, 37, 40tfrcl 6463 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝑆)
4341, 42jca 306 . . . 4 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
4443ralrimiva 2580 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
45 tfrfun 6419 . . . . 5 Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
461funeqi 5301 . . . . 5 (Fun 𝐺 ↔ Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
4745, 46mpbir 146 . . . 4 Fun 𝐺
48 ffvresb 5756 . . . 4 (Fun 𝐺 → ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆)))
4947, 48ax-mp 5 . . 3 ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
5044, 49sylibr 134 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (𝐺 ↾ ω):ω⟶𝑆)
51 df-frec 6490 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
521reseq1i 4964 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
5351, 52eqtr4i 2230 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
5453feq1i 5428 . 2 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (𝐺 ↾ ω):ω⟶𝑆)
5550, 54sylibr 134 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  c0 3464   cuni 3856  cmpt 4113  Ord word 4417  Lim wlim 4419  suc csuc 4420  ωcom 4646  dom cdm 4683  cres 4685  Fun wfun 5274  wf 5276  cfv 5280  recscrecs 6403  freccfrec 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-recs 6404  df-frec 6490
This theorem is referenced by:  frecfcl  6504
  Copyright terms: Public domain W3C validator