ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem GIF version

Theorem frecfcllem 6462
Description: Lemma for frecfcl 6463. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
frecfcllem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem frecfcllem
Dummy variables 𝑓 𝑦 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
2 funmpt 5296 . . . . . . 7 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4 ordom 4643 . . . . . . 7 Ord ω
54a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Ord ω)
6 vex 2766 . . . . . . . 8 𝑓 ∈ V
7 simp2 1000 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
8 simp3 1001 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
9 simp1ll 1062 . . . . . . . . . 10 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
10 fveq2 5558 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
1110eleq1d 2265 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
1211cbvralv 2729 . . . . . . . . . 10 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
139, 12sylib 122 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
14 simp1lr 1063 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
157, 8, 13, 14frecabcl 6457 . . . . . . . 8 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
16 dmeq 4866 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
1716eqeq1d 2205 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
18 fveq1 5557 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
1918fveq2d 5562 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2019eleq2d 2266 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2117, 20anbi12d 473 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2221rexbidv 2498 . . . . . . . . . . 11 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2316eqeq1d 2205 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
2423anbi1d 465 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
2522, 24orbi12d 794 . . . . . . . . . 10 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
2625abbidv 2314 . . . . . . . . 9 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
27 eqid 2196 . . . . . . . . 9 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
2826, 27fvmptg 5637 . . . . . . . 8 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
296, 15, 28sylancr 414 . . . . . . 7 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3029, 15eqeltrd 2273 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
31 limom 4650 . . . . . . . . . 10 Lim ω
32 limuni 4431 . . . . . . . . . 10 (Lim ω → ω = ω)
3331, 32ax-mp 5 . . . . . . . . 9 ω = ω
3433eleq2i 2263 . . . . . . . 8 (𝑦 ∈ ω ↔ 𝑦 ω)
35 peano2 4631 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
3634, 35sylbir 135 . . . . . . 7 (𝑦 ω → suc 𝑦 ∈ ω)
3736adantl 277 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
3833eleq2i 2263 . . . . . . . 8 (𝑘 ∈ ω ↔ 𝑘 ω)
3938biimpi 120 . . . . . . 7 (𝑘 ∈ ω → 𝑘 ω)
4039adantl 277 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ω)
411, 3, 5, 30, 37, 40tfrcldm 6421 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom 𝐺)
421, 3, 5, 30, 37, 40tfrcl 6422 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝑆)
4341, 42jca 306 . . . 4 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
4443ralrimiva 2570 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
45 tfrfun 6378 . . . . 5 Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
461funeqi 5279 . . . . 5 (Fun 𝐺 ↔ Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
4745, 46mpbir 146 . . . 4 Fun 𝐺
48 ffvresb 5725 . . . 4 (Fun 𝐺 → ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆)))
4947, 48ax-mp 5 . . 3 ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
5044, 49sylibr 134 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (𝐺 ↾ ω):ω⟶𝑆)
51 df-frec 6449 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
521reseq1i 4942 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
5351, 52eqtr4i 2220 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
5453feq1i 5400 . 2 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (𝐺 ↾ ω):ω⟶𝑆)
5550, 54sylibr 134 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  c0 3450   cuni 3839  cmpt 4094  Ord word 4397  Lim wlim 4399  suc csuc 4400  ωcom 4626  dom cdm 4663  cres 4665  Fun wfun 5252  wf 5254  cfv 5258  recscrecs 6362  freccfrec 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363  df-frec 6449
This theorem is referenced by:  frecfcl  6463
  Copyright terms: Public domain W3C validator