ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem GIF version

Theorem frecfcllem 6372
Description: Lemma for frecfcl 6373. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
Assertion
Ref Expression
frecfcllem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝑆(𝑔)   𝐺(𝑥,𝑧,𝑔,𝑚)

Proof of Theorem frecfcllem
Dummy variables 𝑓 𝑦 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
2 funmpt 5226 . . . . . . 7 Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4 ordom 4584 . . . . . . 7 Ord ω
54a1i 9 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → Ord ω)
6 vex 2729 . . . . . . . 8 𝑓 ∈ V
7 simp2 988 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
8 simp3 989 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
9 simp1ll 1050 . . . . . . . . . 10 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
10 fveq2 5486 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
1110eleq1d 2235 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
1211cbvralv 2692 . . . . . . . . . 10 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
139, 12sylib 121 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
14 simp1lr 1051 . . . . . . . . 9 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
157, 8, 13, 14frecabcl 6367 . . . . . . . 8 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
16 dmeq 4804 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
1716eqeq1d 2174 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
18 fveq1 5485 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
1918fveq2d 5490 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
2019eleq2d 2236 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
2117, 20anbi12d 465 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2221rexbidv 2467 . . . . . . . . . . 11 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
2316eqeq1d 2174 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
2423anbi1d 461 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
2522, 24orbi12d 783 . . . . . . . . . 10 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
2625abbidv 2284 . . . . . . . . 9 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
27 eqid 2165 . . . . . . . . 9 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
2826, 27fvmptg 5562 . . . . . . . 8 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
296, 15, 28sylancr 411 . . . . . . 7 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
3029, 15eqeltrd 2243 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘𝑓) ∈ 𝑆)
31 limom 4591 . . . . . . . . . 10 Lim ω
32 limuni 4374 . . . . . . . . . 10 (Lim ω → ω = ω)
3331, 32ax-mp 5 . . . . . . . . 9 ω = ω
3433eleq2i 2233 . . . . . . . 8 (𝑦 ∈ ω ↔ 𝑦 ω)
35 peano2 4572 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
3634, 35sylbir 134 . . . . . . 7 (𝑦 ω → suc 𝑦 ∈ ω)
3736adantl 275 . . . . . 6 ((((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
3833eleq2i 2233 . . . . . . . 8 (𝑘 ∈ ω ↔ 𝑘 ω)
3938biimpi 119 . . . . . . 7 (𝑘 ∈ ω → 𝑘 ω)
4039adantl 275 . . . . . 6 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ω)
411, 3, 5, 30, 37, 40tfrcldm 6331 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom 𝐺)
421, 3, 5, 30, 37, 40tfrcl 6332 . . . . 5 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝑆)
4341, 42jca 304 . . . 4 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) ∧ 𝑘 ∈ ω) → (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
4443ralrimiva 2539 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
45 tfrfun 6288 . . . . 5 Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
461funeqi 5209 . . . . 5 (Fun 𝐺 ↔ Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
4745, 46mpbir 145 . . . 4 Fun 𝐺
48 ffvresb 5648 . . . 4 (Fun 𝐺 → ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆)))
4947, 48ax-mp 5 . . 3 ((𝐺 ↾ ω):ω⟶𝑆 ↔ ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑆))
5044, 49sylibr 133 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (𝐺 ↾ ω):ω⟶𝑆)
51 df-frec 6359 . . . 4 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
521reseq1i 4880 . . . 4 (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
5351, 52eqtr4i 2189 . . 3 frec(𝐹, 𝐴) = (𝐺 ↾ ω)
5453feq1i 5330 . 2 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (𝐺 ↾ ω):ω⟶𝑆)
5550, 54sylibr 133 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  c0 3409   cuni 3789  cmpt 4043  Ord word 4340  Lim wlim 4342  suc csuc 4343  ωcom 4567  dom cdm 4604  cres 4606  Fun wfun 5182  wf 5184  cfv 5188  recscrecs 6272  freccfrec 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273  df-frec 6359
This theorem is referenced by:  frecfcl  6373
  Copyright terms: Public domain W3C validator