| Step | Hyp | Ref
 | Expression | 
| 1 |   | frecfcllem.g | 
. . . . . 6
⊢ 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | 
| 2 |   | funmpt 5296 | 
. . . . . . 7
⊢ Fun
(𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 3 | 2 | a1i 9 | 
. . . . . 6
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → Fun (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | 
| 4 |   | ordom 4643 | 
. . . . . . 7
⊢ Ord
ω | 
| 5 | 4 | a1i 9 | 
. . . . . 6
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → Ord
ω) | 
| 6 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑓 ∈ V | 
| 7 |   | simp2 1000 | 
. . . . . . . . 9
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑦 ∈ ω) | 
| 8 |   | simp3 1001 | 
. . . . . . . . 9
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑓:𝑦⟶𝑆) | 
| 9 |   | simp1ll 1062 | 
. . . . . . . . . 10
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆) | 
| 10 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | 
| 11 | 10 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘𝑤) ∈ 𝑆)) | 
| 12 | 11 | cbvralv 2729 | 
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘𝑤) ∈ 𝑆) | 
| 13 | 9, 12 | sylib 122 | 
. . . . . . . . 9
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ∀𝑤 ∈ 𝑆 (𝐹‘𝑤) ∈ 𝑆) | 
| 14 |   | simp1lr 1063 | 
. . . . . . . . 9
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝐴 ∈ 𝑆) | 
| 15 | 7, 8, 13, 14 | frecabcl 6457 | 
. . . . . . . 8
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) | 
| 16 |   | dmeq 4866 | 
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓) | 
| 17 | 16 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚)) | 
| 18 |   | fveq1 5557 | 
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → (𝑔‘𝑚) = (𝑓‘𝑚)) | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(𝑓‘𝑚))) | 
| 20 | 19 | eleq2d 2266 | 
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓‘𝑚)))) | 
| 21 | 17, 20 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) | 
| 22 | 21 | rexbidv 2498 | 
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) | 
| 23 | 16 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅)) | 
| 24 | 23 | anbi1d 465 | 
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))) | 
| 25 | 22, 24 | orbi12d 794 | 
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴)))) | 
| 26 | 25 | abbidv 2314 | 
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 27 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 28 | 26, 27 | fvmptg 5637 | 
. . . . . . . 8
⊢ ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 29 | 6, 15, 28 | sylancr 414 | 
. . . . . . 7
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 30 | 29, 15 | eqeltrd 2273 | 
. . . . . 6
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘𝑓) ∈ 𝑆) | 
| 31 |   | limom 4650 | 
. . . . . . . . . 10
⊢ Lim
ω | 
| 32 |   | limuni 4431 | 
. . . . . . . . . 10
⊢ (Lim
ω → ω = ∪ ω) | 
| 33 | 31, 32 | ax-mp 5 | 
. . . . . . . . 9
⊢ ω =
∪ ω | 
| 34 | 33 | eleq2i 2263 | 
. . . . . . . 8
⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∪ ω) | 
| 35 |   | peano2 4631 | 
. . . . . . . 8
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) | 
| 36 | 34, 35 | sylbir 135 | 
. . . . . . 7
⊢ (𝑦 ∈ ∪ ω → suc 𝑦 ∈ ω) | 
| 37 | 36 | adantl 277 | 
. . . . . 6
⊢
((((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) ∧ 𝑦 ∈ ∪ ω)
→ suc 𝑦 ∈
ω) | 
| 38 | 33 | eleq2i 2263 | 
. . . . . . . 8
⊢ (𝑘 ∈ ω ↔ 𝑘 ∈ ∪ ω) | 
| 39 | 38 | biimpi 120 | 
. . . . . . 7
⊢ (𝑘 ∈ ω → 𝑘 ∈ ∪ ω) | 
| 40 | 39 | adantl 277 | 
. . . . . 6
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ∪
ω) | 
| 41 | 1, 3, 5, 30, 37, 40 | tfrcldm 6421 | 
. . . . 5
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom 𝐺) | 
| 42 | 1, 3, 5, 30, 37, 40 | tfrcl 6422 | 
. . . . 5
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → (𝐺‘𝑘) ∈ 𝑆) | 
| 43 | 41, 42 | jca 306 | 
. . . 4
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ∧ 𝑘 ∈ ω) → (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑆)) | 
| 44 | 43 | ralrimiva 2570 | 
. . 3
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∀𝑘 ∈ ω (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑆)) | 
| 45 |   | tfrfun 6378 | 
. . . . 5
⊢ Fun
recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | 
| 46 | 1 | funeqi 5279 | 
. . . . 5
⊢ (Fun
𝐺 ↔ Fun recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))) | 
| 47 | 45, 46 | mpbir 146 | 
. . . 4
⊢ Fun 𝐺 | 
| 48 |   | ffvresb 5725 | 
. . . 4
⊢ (Fun
𝐺 → ((𝐺 ↾
ω):ω⟶𝑆
↔ ∀𝑘 ∈
ω (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑆))) | 
| 49 | 47, 48 | ax-mp 5 | 
. . 3
⊢ ((𝐺 ↾
ω):ω⟶𝑆
↔ ∀𝑘 ∈
ω (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑆)) | 
| 50 | 44, 49 | sylibr 134 | 
. 2
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐺 ↾ ω):ω⟶𝑆) | 
| 51 |   | df-frec 6449 | 
. . . 4
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) | 
| 52 | 1 | reseq1i 4942 | 
. . . 4
⊢ (𝐺 ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) | 
| 53 | 51, 52 | eqtr4i 2220 | 
. . 3
⊢
frec(𝐹, 𝐴) = (𝐺 ↾ ω) | 
| 54 | 53 | feq1i 5400 | 
. 2
⊢
(frec(𝐹, 𝐴):ω⟶𝑆 ↔ (𝐺 ↾ ω):ω⟶𝑆) | 
| 55 | 50, 54 | sylibr 134 | 
1
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → frec(𝐹, 𝐴):ω⟶𝑆) |