| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3bi | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp3d 1035 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limuni 4487 smores2 6446 ersym 6700 ertr 6703 fvixp 6858 en2 6981 fiintim 7101 eluzle 9742 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 sin01gt0 12281 gznegcl 12906 gzcjcl 12907 gzaddcl 12908 gzmulcl 12909 gzabssqcl 12912 4sqlem4a 12922 ennnfonelemim 13003 prdsbasprj 13323 xpsff1o 13390 subggrp 13722 srgdilem 13940 srgrz 13955 srglz 13956 ringdilem 13983 ringsrg 14018 subrngss 14172 lmodlema 14264 reeff1oleme 15454 cosq14gt0 15514 cosq23lt0 15515 coseq0q4123 15516 coseq00topi 15517 coseq0negpitopi 15518 cosq34lt1 15532 cos02pilt1 15533 ioocosf1o 15536 2sqlem2 15802 2sqlem3 15804 |
| Copyright terms: Public domain | W3C validator |