| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3bi | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp3d 1013 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limuni 4432 smores2 6361 ersym 6613 ertr 6616 fvixp 6771 fiintim 7001 eluzle 9630 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 gznegcl 12569 gzcjcl 12570 gzaddcl 12571 gzmulcl 12572 gzabssqcl 12575 4sqlem4a 12585 ennnfonelemim 12666 prdsbasprj 12984 xpsff1o 13051 subggrp 13383 srgdilem 13601 srgrz 13616 srglz 13617 ringdilem 13644 ringsrg 13679 subrngss 13832 lmodlema 13924 reeff1oleme 15092 cosq14gt0 15152 cosq23lt0 15153 coseq0q4123 15154 coseq00topi 15155 coseq0negpitopi 15156 cosq34lt1 15170 cos02pilt1 15171 ioocosf1o 15174 2sqlem2 15440 2sqlem3 15442 |
| Copyright terms: Public domain | W3C validator |