| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3bi | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp3d 1016 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: limuni 4464 smores2 6410 ersym 6662 ertr 6665 fvixp 6820 en2 6943 fiintim 7061 eluzle 9702 ef01bndlem 12233 sin01bnd 12234 cos01bnd 12235 sin01gt0 12239 gznegcl 12864 gzcjcl 12865 gzaddcl 12866 gzmulcl 12867 gzabssqcl 12870 4sqlem4a 12880 ennnfonelemim 12961 prdsbasprj 13281 xpsff1o 13348 subggrp 13680 srgdilem 13898 srgrz 13913 srglz 13914 ringdilem 13941 ringsrg 13976 subrngss 14129 lmodlema 14221 reeff1oleme 15411 cosq14gt0 15471 cosq23lt0 15472 coseq0q4123 15473 coseq00topi 15474 coseq0negpitopi 15475 cosq34lt1 15489 cos02pilt1 15490 ioocosf1o 15493 2sqlem2 15759 2sqlem3 15761 |
| Copyright terms: Public domain | W3C validator |