Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3bi GIF version

Theorem simp3bi 999
 Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp3bi (𝜑𝜃)

Proof of Theorem simp3bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 119 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp3d 996 1 (𝜑𝜃)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   ∧ w3a 963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107 This theorem depends on definitions:  df-bi 116  df-3an 965 This theorem is referenced by:  limuni  4351  smores2  6231  ersym  6481  ertr  6484  fvixp  6637  fiintim  6862  eluzle  9430  ef01bndlem  11630  sin01bnd  11631  cos01bnd  11632  sin01gt0  11635  ennnfonelemim  12104  reeff1oleme  13032  cosq14gt0  13092  cosq23lt0  13093  coseq0q4123  13094  coseq00topi  13095  coseq0negpitopi  13096  cosq34lt1  13110  cos02pilt1  13111  ioocosf1o  13114
 Copyright terms: Public domain W3C validator