![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3bi | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp3d 1013 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: limuni 4428 smores2 6349 ersym 6601 ertr 6604 fvixp 6759 fiintim 6987 eluzle 9607 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 gznegcl 12516 gzcjcl 12517 gzaddcl 12518 gzmulcl 12519 gzabssqcl 12522 4sqlem4a 12532 ennnfonelemim 12584 xpsff1o 12935 subggrp 13250 srgdilem 13468 srgrz 13483 srglz 13484 ringdilem 13511 ringsrg 13546 subrngss 13699 lmodlema 13791 reeff1oleme 14948 cosq14gt0 15008 cosq23lt0 15009 coseq0q4123 15010 coseq00topi 15011 coseq0negpitopi 15012 cosq34lt1 15026 cos02pilt1 15027 ioocosf1o 15030 2sqlem2 15272 2sqlem3 15274 |
Copyright terms: Public domain | W3C validator |