ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3bi GIF version

Theorem simp3bi 1017
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp3bi (𝜑𝜃)

Proof of Theorem simp3bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 120 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp3d 1014 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  limuni  4447  smores2  6387  ersym  6639  ertr  6642  fvixp  6797  en2  6919  fiintim  7035  eluzle  9667  ef01bndlem  12111  sin01bnd  12112  cos01bnd  12113  sin01gt0  12117  gznegcl  12742  gzcjcl  12743  gzaddcl  12744  gzmulcl  12745  gzabssqcl  12748  4sqlem4a  12758  ennnfonelemim  12839  prdsbasprj  13158  xpsff1o  13225  subggrp  13557  srgdilem  13775  srgrz  13790  srglz  13791  ringdilem  13818  ringsrg  13853  subrngss  14006  lmodlema  14098  reeff1oleme  15288  cosq14gt0  15348  cosq23lt0  15349  coseq0q4123  15350  coseq00topi  15351  coseq0negpitopi  15352  cosq34lt1  15366  cos02pilt1  15367  ioocosf1o  15370  2sqlem2  15636  2sqlem3  15638
  Copyright terms: Public domain W3C validator