| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3bi | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp3d 1013 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limuni 4432 smores2 6361 ersym 6613 ertr 6616 fvixp 6771 fiintim 7001 eluzle 9632 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 gznegcl 12571 gzcjcl 12572 gzaddcl 12573 gzmulcl 12574 gzabssqcl 12577 4sqlem4a 12587 ennnfonelemim 12668 prdsbasprj 12986 xpsff1o 13053 subggrp 13385 srgdilem 13603 srgrz 13618 srglz 13619 ringdilem 13646 ringsrg 13681 subrngss 13834 lmodlema 13926 reeff1oleme 15116 cosq14gt0 15176 cosq23lt0 15177 coseq0q4123 15178 coseq00topi 15179 coseq0negpitopi 15180 cosq34lt1 15194 cos02pilt1 15195 ioocosf1o 15198 2sqlem2 15464 2sqlem3 15466 |
| Copyright terms: Public domain | W3C validator |