Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3bi | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp3d 996 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: limuni 4351 smores2 6231 ersym 6481 ertr 6484 fvixp 6637 fiintim 6862 eluzle 9430 ef01bndlem 11630 sin01bnd 11631 cos01bnd 11632 sin01gt0 11635 ennnfonelemim 12104 reeff1oleme 13032 cosq14gt0 13092 cosq23lt0 13093 coseq0q4123 13094 coseq00topi 13095 coseq0negpitopi 13096 cosq34lt1 13110 cos02pilt1 13111 ioocosf1o 13114 |
Copyright terms: Public domain | W3C validator |