![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3bi | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp3d 1013 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: limuni 4427 smores2 6347 ersym 6599 ertr 6602 fvixp 6757 fiintim 6985 eluzle 9604 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 sin01gt0 11905 gznegcl 12513 gzcjcl 12514 gzaddcl 12515 gzmulcl 12516 gzabssqcl 12519 4sqlem4a 12529 ennnfonelemim 12581 xpsff1o 12932 subggrp 13247 srgdilem 13465 srgrz 13480 srglz 13481 ringdilem 13508 ringsrg 13543 subrngss 13696 lmodlema 13788 reeff1oleme 14907 cosq14gt0 14967 cosq23lt0 14968 coseq0q4123 14969 coseq00topi 14970 coseq0negpitopi 14971 cosq34lt1 14985 cos02pilt1 14986 ioocosf1o 14989 2sqlem2 15202 2sqlem3 15204 |
Copyright terms: Public domain | W3C validator |