| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3bi | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp3d 1014 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limuni 4447 smores2 6387 ersym 6639 ertr 6642 fvixp 6797 en2 6919 fiintim 7035 eluzle 9667 ef01bndlem 12111 sin01bnd 12112 cos01bnd 12113 sin01gt0 12117 gznegcl 12742 gzcjcl 12743 gzaddcl 12744 gzmulcl 12745 gzabssqcl 12748 4sqlem4a 12758 ennnfonelemim 12839 prdsbasprj 13158 xpsff1o 13225 subggrp 13557 srgdilem 13775 srgrz 13790 srglz 13791 ringdilem 13818 ringsrg 13853 subrngss 14006 lmodlema 14098 reeff1oleme 15288 cosq14gt0 15348 cosq23lt0 15349 coseq0q4123 15350 coseq00topi 15351 coseq0negpitopi 15352 cosq34lt1 15366 cos02pilt1 15367 ioocosf1o 15370 2sqlem2 15636 2sqlem3 15638 |
| Copyright terms: Public domain | W3C validator |