| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an3an | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| mp3an3an.1 | ⊢ 𝜑 | 
| mp3an3an.2 | ⊢ (𝜓 → 𝜒) | 
| mp3an3an.3 | ⊢ (𝜃 → 𝜏) | 
| mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | 
| Ref | Expression | 
|---|---|
| mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 3, 4 | mp3an1 1335 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) | 
| 6 | 1, 2, 5 | syl2an 289 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mp3an2ani 1355 mapdom1g 6908 xrminrpcl 11439 tgrest 14405 sincosq1eq 15075 | 
| Copyright terms: Public domain | W3C validator |